scholarly journals Reversible formation of soft coordination polymers from liquid mixtures of photoreactive organometallic ionic liquid and bridging molecules

Soft Matter ◽  
2020 ◽  
Vol 16 (43) ◽  
pp. 9946-9954
Author(s):  
Ryo Sumitani ◽  
Tomoyuki Mochida

Liquid mixtures of a Ru-containing ionic liquid and bridging ligands were reversibly transformed into a coordination polymer or an oligomer liquid by the application of light and heat, thus enabling reversible control of their ionic conductivity.

2019 ◽  
Vol 7 (42) ◽  
pp. 24059-24091 ◽  
Author(s):  
Hai-Ning Wang ◽  
Xing Meng ◽  
Long-Zhang Dong ◽  
Yifa Chen ◽  
Shun-Li Li ◽  
...  

This review summarizes recent developments of coordination polymers and their derivatives for ionic and electrical conductivity with the discussion about synthetic strategies and possible mechanisms to identify the key structural factors.


2021 ◽  
Author(s):  
Pratik Dhakal ◽  
Jindal Shah

In this work, we have developed machine learning models based on support vector machine (SVM) and artificial neural network (ANN) to correlate ionic conductivity of imidazolium-based ionic liquids. The data, collected from the NIST ILThermo Database, spans six orders of magnitude and ranges from 275-475 K. Both models were found to exhibit very good performance. The ANN-model was then used to predict ionic conductivity for all the possible combinations of cations and anions contained in the original dataset, which led to the identification of an ionic liquid with 30% higher ionic conductivity than the highest conductivity reported in the database at 298 K. The model was further employed to predict ionic conductivity of binary ionic liquid mixtures. A large number of ionic liquid mixtures were found to possess non-ideal behavior in that an intermediate mole fraction for such ionic liquid mixtures resulted in either a maximum or minimum in the ionic conductivity.


2021 ◽  
Author(s):  
Pratik Dhakal ◽  
Jindal Shah

In this work, we have developed machine learning models based on support vector machine (SVM) and artificial neural network (ANN) to correlate ionic conductivity of imidazolium-based ionic liquids. The data, collected from the NIST ILThermo Database, spans six orders of magnitude and ranges from 275-475 K. Both models were found to exhibit very good performance. The ANN-model was then used to predict ionic conductivity for all the possible combinations of cations and anions contained in the original dataset, which led to the identification of an ionic liquid with 30% higher ionic conductivity than the highest conductivity reported in the database at 298 K. The model was further employed to predict ionic conductivity of binary ionic liquid mixtures. A large number of ionic liquid mixtures were found to possess non-ideal behavior in that an intermediate mole fraction for such ionic liquid mixtures resulted in either a maximum or minimum in the ionic conductivity.


Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from the one obtained using self-diffusion coefficient analysis and agrees well with experimental electrophoretic NMR measurements, which accounts for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. Additionally, we formulate a way to compute the effective lithium charge that corresponds to and agrees well with electrophoretic measurements and show that lithium effectively carries a negative charge in a remarkably wide range of chemistries and concentrations. The generality of our observation has significant implications for the energy storage community, emphasizing the need to reconsider the potential of these systems as next generation battery electrolytes.<br>


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1101
Author(s):  
Anirban Karmakar ◽  
Anup Paul ◽  
Elia Pantanetti Sabatini ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.


Author(s):  
Daniel C Morris ◽  
Stuart W Prescott ◽  
Jason B Harper

A series of ionic liquids based on the 1-alkyl-3-methylimidazolium cations were examined as components of the solvent mixture for a bimolecular substitution process. The effects on both the rate coefficient...


2016 ◽  
Vol 22 (40) ◽  
pp. 14408-14408
Author(s):  
Joseph K.-H. Hui ◽  
Hiroyuki Kishida ◽  
Keita Ishiba ◽  
Kenta Takemasu ◽  
Masa-aki Morikawa ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (63) ◽  
pp. 51407-51412 ◽  
Author(s):  
Anna S. Ivanova ◽  
Thomas Brinzer ◽  
Elliot A. Roth ◽  
Victor A. Kusuma ◽  
John D. Watkins ◽  
...  

A simple binary system of compounds resembling short-chain versions of popular ionic liquids has been shown to have alloying properties.


Sign in / Sign up

Export Citation Format

Share Document