Can perovskite inspired bismuth halide nanocrystals outperform their lead counterparts?

2020 ◽  
Vol 8 (26) ◽  
pp. 12951-12963
Author(s):  
Sathy Harshavardhan Reddy ◽  
Ranadeep Raj Sumukam ◽  
Banavoth Murali

In the quest for finding non-toxic and stable lead-free perovskite nanocrystals (NCs), bismuth halide perovskites (BHP) have emerged as a promising alternative. This perspective presents an overview, challenges, and future opportunities in BHP NCs.

2021 ◽  
Vol 2 ◽  
Author(s):  
Alessandro Veronese ◽  
Carlo Ciarrocchi ◽  
Marcello Marelli ◽  
Paolo Quadrelli ◽  
Maddalena Patrini ◽  
...  

In order to overcome the toxicity of lead halide perovskites, in recent years the research has focused on replacing lead with more environmentally friendly metals like tin, germanium, bismuth or antimony. However, lead-free perovskites still present instability issues and low performances that do not make them competitive when compared to their lead-based counterparts. Here we report the synthesis of lead-free Cs2SnX6 (X = Br, I) nanostructures of different shapes by using various surface ligands. These compounds are a promising alternative to lead halide perovskites in which the replacement of divalent lead (Pb(II)) with tetravalent tin (Sn(IV)) causes a modification of the standard perovskite structure. We investigate the effects of different amines on the morphology and size of Cs2SnX6 (X = Br, I) nanocrystals, presenting a facile hot-infection method to directly synthesize three-dimensional (3D) nanoparticles as well as two-dimensional (2D) nanoplatelets. The amines not only modify the shape of the crystals, but also affect their optical properties: increasing the length of the amine carbon chain we observe a widening in the bandgap of the compounds and a blue-shift of their emission peak. Alongside the tuning of the chemical composition and the reduction of the crystal size, our study offers a new insight in controlling the physical properties of perovskite nanocrystals by means of the capping ligands, paving the way for future research on lead-free materials.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Chunlong Li ◽  
Jie Li ◽  
Zhengping Li ◽  
Huayong Zhang ◽  
Yangyang Dang ◽  
...  

Nanostructured halide perovskites have highly yielded record LEDs due to their higher versatility in the local management of charge carriers, which has enabled photoluminescence quantum yields (PLQYs) close to 100%....


Author(s):  
Shanti Maria Liga ◽  
Gerasimos Konstantatos

Cesium titanium halide perovskites are novel lead-free optoelectronic materials that have attracted attention in the last two years for their application in solar cells with power conversion efficiencies reaching 3.3%....


Author(s):  
Qian Sun ◽  
Zhi Fang ◽  
Yapeng Zheng ◽  
Zuobao Yang ◽  
Feng Hu ◽  
...  

Currently, as a promising alternative of lead halide perovskites, the nontoxicity lead-free CsSnI3 perovskites have drawn increasing attention. However, the development of tin-based perovskites is still greatly hindered by their...


2019 ◽  
Author(s):  
Subhajit Bhattacharjee ◽  
Sonu Pratap Chaudhary ◽  
Sayan Bhattacharyya

<p>Metal halide perovskites with high absorption coefficient, direct generation of free charge carriers, excellent ambipolar charge carrier transport properties, point-defect tolerance, compositional versatility and solution processability are potentially transforming the photovoltaics and optoelectronics industries. However their limited ambient stability, particularly those of iodide perovskites, obscures their use as photocatalysts especially in aqueous medium. In an unprecedented approach we have exploited the photo-absorption property of the less toxic lead-free Cs<sub>3</sub>Bi<sub>2</sub>X<sub>9 </sub>(X = Br, I) nanocrystals (NCs) to catalyse the degradation of water pollutant organic dye, methylene blue (MB) in presence of visible light at room temperature. After providing a proof-of-concept with bromide perovskites in isopropanol, the perovskites are employed as photocatalysts in water medium by designing perovskite/Ag<sub>2</sub>S and perovskite/TiO<sub>2 </sub>composite systems, with Type I (or quasi Type II) and Type II alignments, respectively. Ag<sub>2</sub>S and TiO<sub>2</sub> coatings decelerate penetration of water into the perovskite layer while facilitating charge carrier extraction. With a minimal NC loading, Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>/Ag<sub>2</sub>S degrades ~90% MB within an hour. Our approach has the potential to unravel the photocatalytic properties of metal halide perovskites for a wide spectrum of real-life applications. </p>


Author(s):  
Qiuqi Li ◽  
Dan Cao ◽  
Xueyin Liu ◽  
Xiangyu Zhou ◽  
Xiaoshuang Chen ◽  
...  

A hierarchical computational screening method is used to find layered lead-free metal halide perovskites with high stability and outstanding optoelectronic properties.


Author(s):  
Daofu Wu ◽  
Xusheng Zhao ◽  
Yanyi Huang ◽  
Junan Lai ◽  
Jiayu Yang ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhifang Tan ◽  
Jincong Pang ◽  
Guangda Niu ◽  
Jun-Hui Yuan ◽  
Kan-Hao Xue ◽  
...  

Abstract Metal halide perovskites have recently been reported as excellent scintillators for X-ray detection. However, perovskite based scintillators are susceptible to moisture and oxygen atmosphere, such as the water solubility of CsPbBr3, and oxidation vulnerability of Sn2+, Cu+. The traditional metal halide scintillators (NaI: Tl, LaBr3, etc.) are also severely restricted by their high hygroscopicity. Here we report a new kind of lead free perovskite with excellent water and radiation stability, Rb2Sn1-x Te x Cl6. The equivalent doping of Te could break the in-phase bonding interaction between neighboring octahedra in Rb2SnCl6, and thus decrease the electron and hole dimensionality. The optimized Te content of 5% resulted in high photoluminescence quantum yield of 92.4%, and low X-ray detection limit of 0.7 µGyair s−1. The photoluminescence and radioluminescence could be maintained without any loss when immersing in water or after 480,000 Gy radiations, outperforming previous perovskite and traditional metal halides scintillators.


2018 ◽  
Vol 140 (49) ◽  
pp. 17001-17006 ◽  
Author(s):  
Bin Yang ◽  
Xin Mao ◽  
Feng Hong ◽  
Weiwei Meng ◽  
Yuxuan Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document