scholarly journals Colloidal Synthesis of Lead-free Cs2TiBr6-xIx Perovskite Nanocrystals

Author(s):  
Shanti Maria Liga ◽  
Gerasimos Konstantatos

Cesium titanium halide perovskites are novel lead-free optoelectronic materials that have attracted attention in the last two years for their application in solar cells with power conversion efficiencies reaching 3.3%....

2021 ◽  
Author(s):  
Arindam Mallick ◽  
Iris Visoly-Fisher

Following the achievement of impressive power conversion efficiencies of perovskite solar cells (PSCs), the current challenges of this technology include long-term stability, upscaling for industrial processing, and its environmental effect....


Author(s):  
Robert D. J. Oliver ◽  
Pietro Caprioglio ◽  
Francisco Peña-Camargo ◽  
Leonardo Buizza ◽  
Fengshuo Zu ◽  
...  

With power conversion efficiencies of perovskite-on-silicon and all-perovskite tandem solar cells increasing at rapid pace, wide bandgap (> 1.7 eV) metal-halide perovskites (MHPs) are becoming a major focus of academic...


2016 ◽  
Vol 28 (42) ◽  
pp. 9333-9340 ◽  
Author(s):  
Weiqiang Liao ◽  
Dewei Zhao ◽  
Yue Yu ◽  
Corey R. Grice ◽  
Changlei Wang ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Chunlong Li ◽  
Jie Li ◽  
Zhengping Li ◽  
Huayong Zhang ◽  
Yangyang Dang ◽  
...  

Nanostructured halide perovskites have highly yielded record LEDs due to their higher versatility in the local management of charge carriers, which has enabled photoluminescence quantum yields (PLQYs) close to 100%....


Author(s):  
Shreyam Chatterjee ◽  
Seihou JINNAI ◽  
Yutaka Ie

Progressive advancement of remarkably high power conversion efficiencies (PCEs) of organic solar cells (OSCs) largely depends on the development of norfullerene acceptors (NFAs), revealing stupendous ability of OSCs to shift...


RSC Advances ◽  
2014 ◽  
Vol 4 (92) ◽  
pp. 50988-50992 ◽  
Author(s):  
Tao Yuan ◽  
Dong Yang ◽  
Xiaoguang Zhu ◽  
Lingyu Zhou ◽  
Jian Zhang ◽  
...  

The power conversion efficiency of a PTB7:PC71BM polymer solar cell was improved up to 9.1% by a combination of methanol treatment followed by conjugation of a water- or alcohol-soluble polyelectrolyte thin layer.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 667 ◽  
Author(s):  
Edson Meyer ◽  
Dorcas Mutukwa ◽  
Nyengerai Zingwe ◽  
Raymond Taziwa

Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.


Nanoscale ◽  
2021 ◽  
Author(s):  
Congcong Zhao ◽  
Jiuxing Wang ◽  
Xuanyi Zhao ◽  
Zhonglin Du ◽  
Renqiang Yang ◽  
...  

The past decade has seen a tremendous development of organic solar cells (OSCs). To date, the high-performance OSCs have boosted the power conversion efficiencies (PCEs) over 17%, showing bright prospects...


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guiming Peng ◽  
Xueqing Xu ◽  
Gang Xu

The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.


2016 ◽  
Vol 3 (2) ◽  
pp. 222-239 ◽  
Author(s):  
Fengling Zhang ◽  
Olle Inganäs ◽  
Yinhua Zhou ◽  
Koen Vandewal

Abstract Global efforts and synergetic interdisciplinary collaborations on solution-processed bulk-heterojunction polymer solar cells (PSCs or OPVs) made power conversion efficiencies over 10% possible. The rapid progress of the field is credited to the synthesis of a large number of novel polymers with specially tunable optoelectronic properties, a better control over the nano-morphology of photoactive blend layers, the introduction of various effective interfacial layers, new device architectures and a deeper understanding of device physics. We will review the pioneering materials for polymer–fullerene solar cells and trace the progress of concepts driving their development. We discuss the evolution of morphology control, interfacial layers and device structures fully exploring the potential of photoactive materials. In order to guide a further increase in power conversion efficiency of OPV, the current understanding of the process of free charge carrier generation and the origin of the photovoltage is summarized followed by a perspective on how to overcome the limitations for industrializing PSCs.


Sign in / Sign up

Export Citation Format

Share Document