A rechargeable electrochromic energy storage device enabling effective energy recovery

Author(s):  
Qingjiao Huang ◽  
Jiajun Wang ◽  
Hui Gong ◽  
Qianqian Zhang ◽  
Mengying Wang ◽  
...  

Efficient energy recovery from electrochromic (EC) devices gives new insight into reducing the consumption of energy and facilitating the recycling of energy.

2011 ◽  
Vol 383-390 ◽  
pp. 7390-7395
Author(s):  
Jin Yu Qu ◽  
Li Yan Liang

Super-capacitor is suitable as braking energy storage device for electric vehicle because of its high charge and discharge rate, long life, simple structure and reliable performance advantages. When driving motor of the electric vehicles runs on regenerative electric power state, it can not only provide braking force, but also charge to the energy storage device to recover the kinetic energy, thus endurance mileage of electric vehicle can be extended considerably. In this paper, braking energy recovery model was built by using the Matlab/Simulink software, and whole vehicle model based on automobile theory, the motor efficiency model and super-capacitor model were mainly included. Meanwhile some researches were made on the simulation, and the impact of the super-capacitor on the braking energy recovery was analyzed.


2022 ◽  
Vol 905 ◽  
pp. 147-159
Author(s):  
Si Meng Zhang

Supercapacitor is a kind of effective energy storage device with merits such as high power density, long cycling life and so on, but their application is limited nowadays compared to the application of batteries. One important restriction is because of the serious self-discharge in supercapacitors, and how to conquer the self-discharge problem is an important issue. In this article we propose an effective way to reduce self-discharge of the supercapacitor by carefully designing of activated carbon (ACs) electrodes and water-in salt electrolyte. The electrochemical characterization shows that our supercapacitor can have the ability to reduce self-discharge.


Author(s):  
Bijoy Krishna Roy ◽  
Ishmam Tahmid ◽  
Taslim Ur Rashid

Increasing demand of energy with exponential depletion of fossil fuel has persuaded the scientific communities to search for renewable and sustainable source of energy. Efficient energy storage device (ESD) is...


Author(s):  
Bincy Lathakumary Vijayan ◽  
Amina Yasin ◽  
Izan Izwan Misnon ◽  
Gopinathan M. Anilkumar ◽  
Fathalla Hamed ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4000
Author(s):  
Eunhwan Kim ◽  
Juyeon Han ◽  
Seokgyu Ryu ◽  
Youngkyu Choi ◽  
Jeeyoung Yoo

For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.


Sign in / Sign up

Export Citation Format

Share Document