A fluorescence nanoprobe for detecting the effect of different oxygen and nutrient conditions on breast cancer cells migration and invasion

2021 ◽  
Author(s):  
Ping Zhou ◽  
Bo Liu ◽  
Mingming Luan ◽  
Na Li ◽  
Bo Tang

Cancer cell migration and invasion are initial steps for tumor metastasis that increases patient mortality. Tumor microenvironment is characterized by hypoxic and low nutrient-containing. Previous studies have suggested that hypoxia...

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247652
Author(s):  
Ebtesam Nafie ◽  
Jade Lolarga ◽  
Brandon Lam ◽  
Jonathan Guo ◽  
Elnaz Abdollahzadeh ◽  
...  

Breast cancer is the leading cause of cancer-related deaths in the United States. The majority of deaths (90%) in breast cancer patients is caused by invasion and metastasis–two features related to the epithelial-to-mesenchymal transition (EMT). Twist1 is a key transcription factor that promotes the EMT, which leads to cell migration, invasion, cancer metastasis, and therapeutic resistance. Harmine is a beta-carboline alkaloid found in a variety of plants and was recently shown to be able to induce degradation of Twist Family BHLH Transcription Factor 1 (Twist1) in non-small cell lung cancer cells (NSCLC). In this study, we show that harmine can inhibit migration and invasion of both human and mouse breast cancer cells in a dose-dependent manner. Further study shows that this inhibition is most likely achieved by inducing a proteasome-dependent Twist1 degradation. At the concentrations tested, harmine did not affect the viability of cells significantly, suggesting that its inhibition of cancer cell migration and invasion is largely independent of its cytotoxicity, but due to its ability to affect regulators of EMT such as Twist1. This result may facilitate the development of strategies that target Twist1 to treat metastatic breast cancer, as Twist1 is expressed at a high level in metastatic breast cancer cells but not in normal cells.


2020 ◽  
Vol 100 (7) ◽  
pp. 928-944
Author(s):  
Sophie Sarah Steinhaeuser ◽  
Erika Morera ◽  
Zuzana Budkova ◽  
Alexander Schepsky ◽  
Qiong Wang ◽  
...  

2010 ◽  
Vol 190 (3) ◽  
pp. 461-477 ◽  
Author(s):  
Nao Hiramoto-Yamaki ◽  
Shingo Takeuchi ◽  
Shuhei Ueda ◽  
Kohei Harada ◽  
Satoshi Fujimoto ◽  
...  

EphA2, a member of the Eph receptor family, is frequently overexpressed in a variety of human cancers, including breast cancers, and promotes cancer cell motility and invasion independently of its ligand ephrin stimulation. In this study, we identify Ephexin4 as a guanine nucleotide exchange factor (GEF) for RhoG that interacts with EphA2 in breast cancer cells, and knockdown and rescue experiments show that Ephexin4 acts downstream of EphA2 to promote ligand-independent breast cancer cell migration and invasion toward epidermal growth factor through activation of RhoG. The activation of RhoG recruits its effector ELMO2 and a Rac GEF Dock4 to form a complex with EphA2 at the tips of cortactin-rich protrusions in migrating breast cancer cells. In addition, the Dock4-mediated Rac activation is required for breast cancer cell migration. Our findings reveal a novel link between EphA2 and Rac activation that contributes to the cell motility and invasiveness of breast cancer cells.


2012 ◽  
Vol 214 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Jorge Diaz ◽  
Evelyn Aranda ◽  
Soledad Henriquez ◽  
Marisol Quezada ◽  
Estefanía Espinoza ◽  
...  

Progesterone and progestins have been demonstrated to enhance breast cancer cell migration, although the mechanisms are still not fully understood. The protease-activated receptors (PARs) are a family of membrane receptors that are activated by serine proteases in the blood coagulation cascade. PAR1 (F2R) has been reported to be involved in cancer cell migration and overexpressed in breast cancer. We herein demonstrate that PAR1 mRNA and protein are upregulated by progesterone treatment of the breast cancer cell lines ZR-75 and T47D. This regulation is dependent on the progesterone receptor (PR) but does not require PR phosphorylation at serine 294 or the PR proline-rich region mPRO. The increase in PAR1 mRNA was transient, being present at 3 h and returning to basal levels at 18 h. The addition of a PAR1-activating peptide (aPAR1) to cells treated with progesterone resulted in an increase in focal adhesion (FA) formation as measured by the cellular levels of phosphorylated FA kinase. The combined but not individual treatment of progesterone and aPAR1 also markedly increased stress fiber formation and the migratory capacity of breast cancer cells. In agreement with in vitro findings, data mining from the Oncomine platform revealed that PAR1 expression was significantly upregulated in PR-positive breast tumors. Our observation that PAR1 expression and signal transduction are modulated by progesterone provides new insight into how the progestin component in hormone therapies increases the risk of breast cancer in postmenopausal women.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4293
Author(s):  
Xiaowen Liu ◽  
Manuel A. Riquelme ◽  
Yi Tian ◽  
Dezhi Zhao ◽  
Francisca M. Acosta ◽  
...  

ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells into the bone. However, the underlying molecular mechanism is not well understood. Here, we demonstrate the important roles of the CXCR4 and P2Y11 purinergic receptors in mediating the inhibitory effect of ATP on breast cancer cell migration and bone metastasis. Wound-healing and transwell migration assays showed that non-hydrolysable ATP analogue, ATPγS, inhibited migration of bone-tropic human breast cancer cells in a dose-dependent manner. BzATP, an agonist for P2X7 and an inducer for P2Y11 internalization, had a similar dose-dependent inhibition on cell migration. Both ATPγS and BzATP suppressed the expression of CXCR4, a chemokine receptor known to promote breast cancer bone metastasis, and knocking down CXCR4 expression by siRNA attenuated the inhibitory effect of ATPγS on cancer cell migration. While a P2X7 antagonist A804598 had no effect on the impact of ATPγS on cell migration, antagonizing P2Y11 by NF157 ablated the effect of ATPγS. Moreover, the reduction in P2Y11 expression by siRNA decreased cancer cell migration and abolished the impact of ATPγS on cell migration and CXCR4 expression. Similar to the effect of ATPγS on cell migration, antagonizing P2Y11 inhibited bone-tropic breast cancer cell migration in a dose-dependent manner. An in vivo study using an intratibial bone metastatic model showed that ATPγS inhibited breast cancer growth in the bone. Taken together, these results suggest that ATP inhibits bone-tropic breast cancer cells by down-regulating the P2Y11 purinergic receptor and the down-regulation of CXCR4 expression.


2010 ◽  
Vol 207 (11) ◽  
pp. 2421-2437 ◽  
Author(s):  
Yingjie Xu ◽  
Tarek A. Bismar ◽  
Jie Su ◽  
Bin Xu ◽  
Glen Kristiansen ◽  
...  

The actin cross-linking protein filamin A (FLNa) functions as a scaffolding protein and couples cell cytoskeleton to extracellular matrix and integrin receptor signaling. In this study, we report that FLNa suppresses invasion of breast cancer cells and regulates focal adhesion (FA) turnover. Two large progression tissue microarrays from breast cancer patients revealed a significant decrease of FLNa levels in tissues from invasive breast cancer compared with benign disease and in lymph node–positive compared with lymph node–negative breast cancer. In breast cancer cells and orthotopic mouse breast cancer models, down-regulation of FLNa stimulated cancer cell migration, invasion, and metastasis formation. Time-lapse microscopy and biochemical assays after FLNa silencing and rescue with wild-type or mutant protein resistant to calpain cleavage revealed that FLNa regulates FA disassembly at the leading edge of motile cells. Moreover, FLNa down-regulation enhanced calpain activity through the mitogen-activated protein kinase–extracellular signal-regulated kinase cascade and stimulated the cleavage of FA proteins. These results document a regulation of FA dynamics by FLNa in breast cancer cells.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Johanna Ndamwena Amunjela ◽  
Steven John Tucker

Breast cancer subtypes such as triple-negative that lack the expression of oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 2 receptor (HER2), remain poorly clinically managed due to a lack of therapeutic targets. This necessitates identification and validation of novel targets. Suppression of Popeye domain-containing protein 1 (POPDC1) is known to promote tumorigenesis and correlate to poor clinical outcomes in various cancers, and also promotes cardiac and skeletal muscle pathologies. It remains to be established whether POPDC1 is dysregulated in breast cancer, and whether overcoming the dysregulation of POPDC1 could present a potential therapeutic strategy to inhibit breast tumorigenesis. We assessed the potential of POPDC1 as a novel target for inhibiting breast cancer cell migration and proliferation. POPDC1 was significantly suppressed with reduced cell membrane localization in breast cancer cells. Furthermore, functional suppression of POPDC1 promoted breast cancer cell migration and proliferation, which were inhibited by POPDC1 overexpression. Finally, cAMP interacts with POPDC1 and up-regulates its expression in breast cancer cells. These findings suggest that POPDC1 plays a role in breast tumorigenesis and represents a potential therapeutic target or biomarker in breast cancer medicine.


2018 ◽  
Vol 10 (6) ◽  
pp. 559-572 ◽  
Author(s):  
Xiaoyu Song ◽  
Wei Liu ◽  
Xiao Yuan ◽  
Jiying Jiang ◽  
Wanjuan Wang ◽  
...  

Abstract Tumor metastasis represents the main causes of cancer-related death. Our recent study showed that chemokine CCL18 secreted from tumor-associated macrophages regulates breast tumor metastasis, but the underlying mechanisms remain less clear. Here, we show that ARF6 GTPase-activating protein ACAP4 regulates CCL18-elicited breast cancer cell migration via the acetyltransferase PCAF-mediated acetylation. CCL18 stimulation elicited breast cancer cell migration and invasion via PCAF-dependent acetylation. ACAP4 physically interacts with PCAF and is a cognate substrate of PCAF during CCL18 stimulation. The acetylation site of ACAP4 by PCAF was mapped to Lys311 by mass spectrometric analyses. Importantly, dynamic acetylation of ACAP4 is essential for CCL18-induced breast cancer cell migration and invasion, as overexpression of the persistent acetylation-mimicking or non-acetylatable ACAP4 mutant blocked CCL18-elicited cell migration and invasion. Mechanistically, the acetylation of ACAP4 at Lys311 reduced the lipid-binding activity of ACAP4 to ensure a robust and dynamic cycling of ARF6–ACAP4 complex with plasma membrane in response to CCL18 stimulation. Thus, these results present a previously undefined mechanism by which CCL18-elicited acetylation of the PH domain controls dynamic interaction between ACAP4 and plasma membrane during breast cancer cell migration and invasion.


2021 ◽  
Author(s):  
Hemayet Ullah ◽  
Nagib Ahsan ◽  
Sivanesan Dakshanamurthy

Scaffold protein RACK1 mediates cancer cell migration mostly through regulation of focal adhesion (FA) assembly by promoting a focal adhesion kinase (FAK) activation downstream of the integrin clustering and adhesion at the extracellular matrix (ECM). Here we demonstrated the efficacy of our recently developed RACK1 Y246 phosphorylation inhibitor compounds (SD29 and SD29-14) to inhibit the migration and invasion of MCF7 and MDA-MB-231 breast cancer cell lines. Using multiple assays, our results confirmed that inhibitor compounds effectively prevent the filopodia/lamellipodia development and inhibits the migration of breast cancer cells. A mechanistic model of the inhibitor compounds has been developed. Migration and invasion capabilities of the cancer cells define the metastasis of cancer. Thus, our results suggest a potential therapeutic mechanism of the inhibitors to prevent metastasis in diverse cancers.


2019 ◽  
Vol 8 (11) ◽  
pp. 1539-1552 ◽  
Author(s):  
Juan Carlos Juárez-Cruz ◽  
Miriam Daniela Zuñiga-Eulogio ◽  
Monserrat Olea-Flores ◽  
Eduardo Castañeda-Saucedo ◽  
Miguel Ángel Mendoza-Catalán ◽  
...  

Breast cancer is the most common invasive neoplasia, and the second leading cause of the cancer deaths in women worldwide. Mammary tumorigenesis is severely linked to obesity, one potential connection is leptin. Leptin is a hormone secreted by adipocytes, which contributes to the progression of breast cancer. Cell migration, metalloproteases secretion, and invasion are cellular processes associated with various stages of metastasis. These processes are regulated by the kinases FAK and Src. In this study, we utilized the breast cancer cell lines MCF7 and MDA-MB-231 to determine the effect of leptin on FAK and Src kinases activation, cell migration, metalloprotease secretion, and invasion. We found that leptin activates FAK and Src and induces the localization of FAK to the focal adhesions. Interestingly, leptin promotes the activation of FAK through a Src- and STAT3-dependent canonical pathway. Specific inhibitors of FAK, Src and STAT3 showed that the effect exerted by leptin in cell migration in breast cancer cells is dependent on these proteins. Moreover, we established that leptin promotes the secretion of the extracellular matrix remodelers, MMP-2 and MMP-9 and invasion in a FAK and Src-dependent manner. Our findings strongly suggest that leptin promotes the development of a more aggressive invasive phenotype in mammary cancer cells.


Sign in / Sign up

Export Citation Format

Share Document