Rapid one-step scalable microwave synthesis of Ti3C2Tx MXene

2021 ◽  
Author(s):  
Jing Zhu ◽  
Jingyi Zhang ◽  
Ruiming Lin ◽  
Benwei Fu ◽  
Chengyi Song ◽  
...  

We demonstrate a rapid one-step scalable microwave heating-based method to prepare Ti3C2Tx MXenes, which shortens the synthesis time from tens of hours from state-of-the-art approaches to 15 minutes and avoids...

2014 ◽  
Vol 602-603 ◽  
pp. 118-121
Author(s):  
You Jun Lu ◽  
Hong Fang Shen ◽  
Sheng Wei Guo

Nanosized silicon carbide powders were synthesized from a mixture of silicon and carbon by microwave heating methods. The Result Indicates SiC can be formed at lower temperatures by using the Si-C reaction at 1200°C for 30min. XRD patterns shows that SiC peaks appeared as the only crystalline phase. SEM photo shows the particle size was 100~200 nanometer. At the same time, Effects of chemical reaction of silicon and carbon was researched by mechanical activated microwave synthesis.


Author(s):  
Yingce Xia ◽  
Tianyu He ◽  
Xu Tan ◽  
Fei Tian ◽  
Di He ◽  
...  

Sharing source and target side vocabularies and word embeddings has been a popular practice in neural machine translation (briefly, NMT) for similar languages (e.g., English to French or German translation). The success of such wordlevel sharing motivates us to move one step further: we consider model-level sharing and tie the whole parts of the encoder and decoder of an NMT model. We share the encoder and decoder of Transformer (Vaswani et al. 2017), the state-of-the-art NMT model, and obtain a compact model named Tied Transformer. Experimental results demonstrate that such a simple method works well for both similar and dissimilar language pairs. We empirically verify our framework for both supervised NMT and unsupervised NMT: we achieve a 35.52 BLEU score on IWSLT 2014 German to English translation, 28.98/29.89 BLEU scores on WMT 2014 English to German translation without/with monolingual data, and a 22.05 BLEU score on WMT 2016 unsupervised German to English translation.


2020 ◽  
Vol 19 ◽  
pp. 153601212097309
Author(s):  
Jia Wang ◽  
R. Michael van Dam

New platforms are enabling radiochemistry to be carried out in tiny, microliter-scale volumes, and this capability has enormous benefits for the production of radiopharmaceuticals. These droplet-based technologies can achieve comparable or better yields compared to conventional methods, but with vastly reduced reagent consumption, shorter synthesis time, higher molar activity (even for low activity batches), faster purification, and ultra-compact system size. We review here the state of the art of this emerging direction, summarize the radiotracers and prosthetic groups that have been synthesized in droplet format, describe recent achievements in scaling up activity levels, and discuss advantages and limitations and the future outlook of these innovative devices.


Author(s):  
Ionut Schiopu ◽  
Adrian Munteanu

Abstract This paper proposes a novel approach for lossless coding of light field (LF) images based on a macro-pixel (MP) synthesis technique which synthesizes the entire LF image in one step. The reference views used in the synthesis process are selected based on four different view configurations and define the reference LF image. This image is stored as an array of reference MPs which collect one pixel from each reference view, being losslessly encoded as a base layer. A first contribution focuses on a novel network design for view synthesis which synthesizes the entire LF image as an array of synthesized MPs. A second contribution proposes a network model for coding which computes the MP prediction used for lossless encoding of the remaining views as an enhancement layer. Synthesis results show an average distortion of 29.82 dB based on four reference views and up to 36.19 dB based on 25 reference views. Compression results show an average improvement of 29.9% over the traditional lossless image codecs and 9.1% over the state-of-the-art.


2011 ◽  
Vol 64 (7) ◽  
pp. 873 ◽  
Author(s):  
Ivan Greguric ◽  
Stephen Taylor ◽  
Tien Pham ◽  
Naomi Wyatt ◽  
Cathy D. Jiang ◽  
...  

[18F]6-Fluoro-N-[2-(diethylamino)ethyl]nicotinamide [18F]MEL050 is a novel nicotinamide-based radiotracer, designed to target random metastatic dissemination of melanoma tumours by targeting melanin. Preclinical studies suggest that [18F]MEL050 has an excellent potential to improve diagnosis and staging of melanoma. Here we report the radiochemical optimization conditions of [18F]MEL050 and its large scale automated synthesis using a GE FXFN automated radiosynthesis module for clinical, phase-1 investigation. [18F]MEL050 was prepared via a one-step synthesis using no-carrier added K[18F]F-Krytpofix® 222 (DMSO, 170°C, 5 min) followed by HPLC purification. Using 6-chloro-N-[2-(diethylamino)ethyl]nicotinamide as precursor, [18F]MEL050 was obtained in 40–46% radiochemical yield (non-decay corrected), in greater than 99.9% radiochemical purity and specific activity ranging from 240 to 325 GBq μmol–1. Total synthesis time including formulation was 40 min and [18F]MEL050 was stable (99.8%) in PBS for 6 h.


2011 ◽  
Vol 485 ◽  
pp. 127-130 ◽  
Author(s):  
Masashi Yoshinaga ◽  
Norihito Kijima ◽  
Sonoko Wakahara ◽  
Junji Akimoto

SnO2nanoparticles were successfully synthesized by the microwave heating. The crystallite size of the SnO2nanoparticles was estimated to be about 3 nm from the Scherre’s equation. The initial lithium insertion capacity of the SnO2nanoparticles was 2110 mAh/g which is larger than that of the micro-sized commercial SnO2product. The rechargeable capacity at 10 cycles was 1060 mAh/g, and the capacity retention over the tenth cycles was about 50 %.


2004 ◽  
Vol 34 (3) ◽  
pp. 413-420 ◽  
Author(s):  
Sanjay Kumar ◽  
Mili Kapoor ◽  
Namita Surolia ◽  
Avadhesha Surolia

Sign in / Sign up

Export Citation Format

Share Document