Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption

2022 ◽  
Author(s):  
Dian Zhao ◽  
Kuangli Yu ◽  
Xue Han ◽  
Yabing He ◽  
Banglin Chen

Metal-organic frameworks (MOFs), as an emerging kind of porous materials, excels in designability, regulatability, and modifiability in terms of composition, topology, pore size, and surface chemistry, thus affording a huge...

2020 ◽  
Author(s):  
Alexander C. Forse ◽  
Kristen A. Colwell ◽  
Miguel I. Gonzalez ◽  
Stefan Benders ◽  
Rodolfo M. Torres-Gavosto ◽  
...  

The rapid diffusion of molecules in porous materials is critical for numerous applications including separations, energy storage, sensing, and catalysis. A common strategy for tuning guest diffusion rates is to vary the material pore size, although detailed studies that isolate the effect of changing this particular variable are lacking. Here, we begin to address this challenge by measuring the diffusion of carbon dioxide in two isoreticular metal–organic frameworks featuring channels with different diameters, Zn<sub>2</sub>(dobdc) (dobdc<sup>4–</sup> = 2,5-dioxidobenzene-1,4-dicarboxylate) and Zn<sub>2</sub>(dobpdc) (dobpdc<sup>4−</sup> = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate), using pulsed field gradient NMR spectroscopy. An increase in the pore diameter from 15 Å in Zn<sub>2</sub>(dobdc) to 22 Å in Zn<sub>2</sub>(dobpdc) is accompanied by an increase in the self-diffusion of CO<sub>2</sub> by a factor of 4 to 6, depending on the gas pressure. Analysis of the diffusion anisotropy in Zn<sub>2</sub>(dobdc) reveals that the self-diffusion coefficient for motion of CO<sub>2</sub> along the framework channels is at least 10,000 times greater than for motion between the framework channels. Our findings should aid the design of improved porous materials for a range of applications where diffusion plays a critical role in determining performance.


2020 ◽  
Author(s):  
Alexander C. Forse ◽  
Kristen A. Colwell ◽  
Miguel I. Gonzalez ◽  
Stefan Benders ◽  
Rodolfo M. Torres-Gavosto ◽  
...  

The rapid diffusion of molecules in porous materials is critical for numerous applications including separations, energy storage, sensing, and catalysis. A common strategy for tuning guest diffusion rates is to vary the material pore size, although detailed studies that isolate the effect of changing this particular variable are lacking. Here, we begin to address this challenge by measuring the diffusion of carbon dioxide in two isoreticular metal–organic frameworks featuring channels with different diameters, Zn<sub>2</sub>(dobdc) (dobdc<sup>4–</sup> = 2,5-dioxidobenzene-1,4-dicarboxylate) and Zn<sub>2</sub>(dobpdc) (dobpdc<sup>4−</sup> = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate), using pulsed field gradient NMR spectroscopy. An increase in the pore diameter from 15 Å in Zn<sub>2</sub>(dobdc) to 22 Å in Zn<sub>2</sub>(dobpdc) is accompanied by an increase in the self-diffusion of CO<sub>2</sub> by a factor of 4 to 6, depending on the gas pressure. Analysis of the diffusion anisotropy in Zn<sub>2</sub>(dobdc) reveals that the self-diffusion coefficient for motion of CO<sub>2</sub> along the framework channels is at least 10,000 times greater than for motion between the framework channels. Our findings should aid the design of improved porous materials for a range of applications where diffusion plays a critical role in determining performance.


2020 ◽  
Author(s):  
Alexander C. Forse ◽  
Kristen A. Colwell ◽  
Miguel I. Gonzalez ◽  
Stefan Benders ◽  
Rodolfo M. Torres-Gavosto ◽  
...  

The rapid diffusion of molecules in porous materials is critical for numerous applications including separations, energy storage, sensing, and catalysis. A common strategy for tuning guest diffusion rates is to vary the material pore size, although detailed studies that isolate the effect of changing this particular variable are lacking. Here, we begin to address this challenge by measuring the diffusion of carbon dioxide in two isoreticular metal–organic frameworks featuring channels with different diameters, Zn<sub>2</sub>(dobdc) (dobdc<sup>4–</sup> = 2,5-dioxidobenzene-1,4-dicarboxylate) and Zn<sub>2</sub>(dobpdc) (dobpdc<sup>4−</sup> = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate), using pulsed field gradient NMR spectroscopy. An increase in the pore diameter from 15 Å in Zn<sub>2</sub>(dobdc) to 22 Å in Zn<sub>2</sub>(dobpdc) is accompanied by an increase in the self-diffusion of CO<sub>2</sub> by a factor of 4 to 6, depending on the gas pressure. Analysis of the diffusion anisotropy in Zn<sub>2</sub>(dobdc) reveals that the self-diffusion coefficient for motion of CO<sub>2</sub> along the framework channels is at least 10,000 times greater than for motion between the framework channels. Our findings should aid the design of improved porous materials for a range of applications where diffusion plays a critical role in determining performance.


Author(s):  
Timur Islamoglu ◽  
Karam B. Idrees ◽  
Florencia A. Son ◽  
Zhijie Chen ◽  
Seung-Joon Lee ◽  
...  

Textural properties—such as the surface area, pore size distribution, and pore volume—are at the forefront of characterization for porous materials.


2020 ◽  
pp. 2001980
Author(s):  
Ming Zhong ◽  
Lingjun Kong ◽  
Kun Zhao ◽  
Ying‐Hui Zhang ◽  
Na Li ◽  
...  

2021 ◽  
Author(s):  
Monir Falsafi ◽  
Amir Shokooh Saljooghi ◽  
Khalil Abnous ◽  
Seyed Mohammad Taghdisi ◽  
Mohammad Ramezani ◽  
...  

Metal–organic frameworks (MOFs), as a prominent category of hybrid porous materials constructed from metal clusters or ions plus organic linkers, have been broadly employed as controlled systems of drug delivery...


2021 ◽  
pp. 2100283
Author(s):  
Bing‐Bing Guo ◽  
Jia‐Cheng Yin ◽  
Na Li ◽  
Zi‐Xuan Fu ◽  
Xiao Han ◽  
...  

2020 ◽  
Author(s):  
Siddhartha De ◽  
Thomas Devic ◽  
Alexandra Fateeva

Given the ubiquitous role of porphyrins in natural systems, these molecules and related derivatives such as phthalocyanines are fascinating building units to achieve functional porous materials. Porphyrin-based MOFs have been...


2021 ◽  
Author(s):  
Lili Fan ◽  
Zixi Kang ◽  
Mengfei Li ◽  
Daofeng Sun

Among various kinds of materials that have been investigated as electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), metal-organic frameworks (MOFs) emerge as...


Sign in / Sign up

Export Citation Format

Share Document