Emission wavelength control of CsPb(Br1-xClx)3 nanocrystals for blue light-emitting diode applications

CrystEngComm ◽  
2021 ◽  
Author(s):  
Seung-Bum Cho ◽  
Jin-woo Jung ◽  
Yoon Seok Kim ◽  
Chang-Hee Cho ◽  
Il-Kyu Park

All-inorganic materials, mixed halide perovskite (MHP) nanocrystals (NCs), have attracted considerable attention recently because of their excellent luminescent efficiencies and extraordinary physical properties, making them a promising material for next-generation...

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 209
Author(s):  
Gopi Chandra Adhikari ◽  
Saroj Thapa ◽  
Yang Yue ◽  
Hongyang Zhu ◽  
Peifen Zhu

All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN− ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies.


2005 ◽  
Vol 20 (1) ◽  
pp. 61 ◽  
Author(s):  
Yun Sil Chang ◽  
Jong Hee Hwang ◽  
Hyuk Nam Kwon ◽  
Chang Won Choi ◽  
Sun Young Ko ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fumiya Osawa ◽  
Kazuhiro Marumoto

Abstract Spin-states and charge-trappings in blue organic light-emitting diodes (OLEDs) are important issues for developing high-device-performance application such as full-color displays and white illumination. However, they have not yet been completely clarified because of the lack of a study from a microscopic viewpoint. Here, we report operando electron spin resonance (ESR) spectroscopy to investigate the spin-states and charge-trappings in organic semiconductor materials used for blue OLEDs such as a blue light-emitting material 1-bis(2-naphthyl)anthracene (ADN) using metal–insulator–semiconductor (MIS) diodes, hole or electron only devices, and blue OLEDs from the microscopic viewpoint. We have clarified spin-states of electrically accumulated holes and electrons and their charge-trappings in the MIS diodes at the molecular level by directly observing their electrically-induced ESR signals; the spin-states are well reproduced by density functional theory. In contrast to a green light-emitting material, the ADN radical anions largely accumulate in the film, which will cause the large degradation of the molecule and devices. The result will give deeper understanding of blue OLEDs and be useful for developing high-performance and durable devices.


2018 ◽  
Vol 89 (10) ◽  
pp. 1964-1974
Author(s):  
Yi Huang ◽  
Guangdong Sun ◽  
Yating Ji ◽  
Dapeng Li ◽  
Qinguo Fan ◽  
...  

A blue light curing process was developed to solve the nozzle clogging challenge commonly encountered in conventional textile pigment printing, by using camphorquinone (CQ) and ethyl-4-dimethylaminobenzoate (EDMAB) as a photoinitiator combination and substituting oligomers and monomers for a polymeric binder. High light absorption efficiency was insured by closely matching the spectrum of the photoinitiator with a custom-made blue light light-emitting diode set-up. Kinetic analyses of such a CQ/EDMAB system indicated that the maximum polymerization rate of the monomer was proportional to [PI]0.5 and [I0]0.5, while excessive high photoinitiator concentration (>1 wt%) will decrease the polymerization rate because of the “filter effect.” With optimized blue light curable pigment ink formula and irradiation conditions, the photocurable pigment printed fabrics exhibited uniform and vibrant colors, clear outlines, and excellent wet and dry rubbing fastness of grades 4 and 4–5, respectively.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6754
Author(s):  
Gintare Krucaite ◽  
Saulius Grigalevicius

Organic light emitting diode (OLED) is a new, promising technology in the field of lighting and display applications due to the advantages offered by its organic electroactive derivatives over inorganic materials. OLEDs have prompted a great deal of investigations within academia as well as in industry because of their potential applications. The electroactive layers of OLEDs can be fabricated from low molecular weight derivatives by vapor deposition or from polymers by spin coating from their solution. Among the low-molar-mass compounds under investigation in this field, carbazole-based materials have been studied at length for their useful chemical and electronic characteristics. The carbazole is an electron-rich heterocyclic compound, whose structure can be easily modified by rather simple reactions in order to obtain 2,7(3,6)-diaryl(arylamino)-substituted carbazoles. The substituted derivatives are widely used for the formation of OLEDs due to their good charge carrier injection and transfer characteristics, electroluminescence, thermally activated delayed fluorescence, improved thermal and morphological stability as well as their thin film forming characteristics. On the other hand, relatively high triplet energies of some substituted carbazole-based compounds make them useful components as host materials even for wide bandgap triplet emitters. The present review focuses on 2,7(3,6)-diaryl(arylamino)-substituted carbazoles, which were described in the last decade and were applied as charge-transporting layers, fluorescent and phosphorescent emitters as well as host materials for OLED devices.


2019 ◽  
Vol 27 (16) ◽  
pp. A1207 ◽  
Author(s):  
Mingming Su ◽  
Tanglei Zhang ◽  
Jun Su ◽  
Zhao Wang ◽  
Yongming Hu ◽  
...  

2014 ◽  
Vol 23 (6) ◽  
pp. 068502
Author(s):  
Xiang-Jing Zhuo ◽  
Jun Zhang ◽  
Dan-Wei Li ◽  
Han-Xiang Yi ◽  
Zhi-Wei Ren ◽  
...  

2021 ◽  
pp. 4265-4272
Author(s):  
Nur Fadilah Jamaludin ◽  
Natalia Yantara ◽  
Benny Febriansyah ◽  
Yeow Boon Tay ◽  
Bening Tirta Muhammad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document