Grain boundary-induced premelting and solid ↔ melt phase transformations: effect of interfacial widths and energies and triple junctions at the nanoscale

Author(s):  
Anup Basak

Grain boundary-induced transformations between solid, premelt, and melt are studied using a phase field approach. The effect of grain boundary width and energy and triple junction energy is studied.

2021 ◽  
Vol 18 (2) ◽  
pp. 102-107
Author(s):  
Arunabha Mohan Roy

A short review on a thermodynamically consistent multiphase phase-field approach for virtual melting has been presented. The important outcomes of solid-solid phase transformations via intermediate melt have been discussed for HMX crystal. It is found out that two nanoscale material parameters and solid-melt barrier term in the phase-field model significantly affect the mechanism of PTs, induces nontrivial scale effects, and changes PTs behaviors at the nanoscale during virtual melting.


2015 ◽  
Vol 5 ◽  
pp. 173-195
Author(s):  
Günter Gottstein ◽  
Lazar S. Shvindlerman

Grain boundary triple junctions are the structural elements of a polycrystal. Recently it was recognized that they can strongly impact the microstructural evolution, and therefore there engender new opportunities to control and to design the grain microstructure of fine-grained and nanocrystalline materials due to their effect on recovery, recrystallization and grain growth. The measurement of triple junction energy and mobility is thus of great importance. The line energy of a triple junction constructs an additional driving force of grain growth. Taking the triple line energy into account, a modified form of the Zener force and the Gibbs-Thomson relation can be derived to reveal the influence of the triple line energy on second phase particles and the change of the equilibrium concentration of vacancies in the vicinity of voids at a grain boundary. The impact of triple junctions on the sintering of nanopowders is discussed. The role of “grain boundary - free surface” triple lines in the adhesive contact formation between spherical nanoparticles is considered. It is shown that there is a critical value of the triple line energy above which the nanoparticles do not stick together. Based on this result, a new nanoparticle agglomeration mechanism is proposed, which accounts for the formation of large agglomerates of crystallographically aligned nanoparticles during the nanopowder processing.


2004 ◽  
Vol 467-470 ◽  
pp. 801-806 ◽  
Author(s):  
Vera G. Sursaeva

When a bicrystal or polycrystal are subjected to a change in temperature, the individual responses of the two adjoining crystals may differ in a manner, which tends to produce a dilatational mismatch along grain boundaries. If compatibility is to be retained along the interface, an additional set of stresses must then be generated in order to conserve this compatibility. ‘Compatibility stresses’ will also be generated whenever a polycrystal is heated or cooled and the thermal expansion coefficients of the individual grains are different due to thermal expansion anisotropy. In such cases adjacent grains will attempt to change dimensions and develop mismatches by amounts controlled by the parameter Δa*ΔΤ, where Δa is the difference between the thermal expansion coefficients in the appropriate directions, and ΔΤ is the temperature change. These ‘compatibility stresses’ may be relieves if grain boundary motion, triple junction migration and grain growth are possible. These ‘compatibility stresses’ may play important role in the kinetic behavior of the microstructure ranging from influencing the behavior of lattice dislocations near the grain boundaries to promoting grain boundary and triple junction dragging or moving. The motion of the ‘special’ grain boundaries, triple junctions with ‘special’ grain boundaries and twins under the influence of internal mechanical stresses is the main subject of this paper.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 185
Author(s):  
Ernst Gamsjäger ◽  
Boris Gschöpf ◽  
Jiří Svoboda

Grain boundary networks composed of equal microstructural elements were investigated in a recent paper. In this work a more complicated artificial grain topology consisting of one four-sided, two six-sided and one eight-sided grain is designed to further investigate the influence of grain boundary and triple junction mobilities on the kinetics of the system in more detail. Depending on the value of the equal mobility of all triple junctions, the initially square-shaped four-sided grain changes its shape to become more or less rectangular. This indicates that the grain morphology is influenced by the value of the mobility of the triple junctions. It is also demonstrated that a grain arrangement with low mobility triple junctions controlling the kinetics of grain growth enhances growth of the large eight-sided grains. In addition, grain growth is investigated for different values of mobilities of triple junctions and grain boundaries. A strong elongation of several grains is predicted by the modeling results for reduced mobilities of the microstructural grain boundary elements. The two-dimensional modeling results are compared to micrographs of a heat-treated titanium niobium microalloyed steel. This feature, namely the evolution of elongated grains, is observed in the micrograph due to the pinning effect of (Ti, Nb)C precipitates at elevated soaking temperatures of around 1100 °C. Furthermore, the experiments show that a broader distribution of the grain sizes occur at 1100 °C compared to soaking temperatures, where pinning due to precipitates plays a less prominent role. A widening of the distribution of the grain sizes for small triple junction mobilities is also predicted by the unit cell model.


Sign in / Sign up

Export Citation Format

Share Document