A Hybrid Coarse-Grained Model for Structure, Solvation and Assembly of Lipid-Like Peptides

Author(s):  
Akash Banerjee ◽  
Chien Yu Lu ◽  
Meenakshi Dutt

Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold enormous potential for powering future solid state devices and solar cells. The functionality and integration of these proteins...

2015 ◽  
Vol 39 (11) ◽  
pp. 8602-8613 ◽  
Author(s):  
Karuppanan Prabakaran ◽  
Smita Mohanty ◽  
Sanjay Kumar Nayak

Exfoliated MMT nanoplatelet incorporated PEO/PVdF–HFP electrolyte and TiO2/ZnO photoanode based DSSCs showed an improved solar energy conversion efficiency of about 3.8%.


2015 ◽  
Vol 8 (12) ◽  
pp. 3572-3576 ◽  
Author(s):  
Evan A. Gizzie ◽  
J. Scott Niezgoda ◽  
Maxwell T. Robinson ◽  
Andrew G. Harris ◽  
G. Kane Jennings ◽  
...  

Novel biophotovoltaic devices were prepared by electrochemically entrapping Photosystem I in a conductive polyaniline film, grown in situ on TiO2 anodes.


Author(s):  
Alexander V. Budanov ◽  
Yury N. Vlasov ◽  
Gennady I. Kotov ◽  
Evgeniy V. Rudnev ◽  
Pavel I. Podprugin

Показана возможность синтеза соединений Cu2SnS3 и Cu2SnSe3 на стеклянных подложках путём отжига в парах халькогена тонкой металлической плёнки сплава Cu:Sn = 2:1 в вакуумной графитовой камере типа квазизамкнутого объёма. Методом рентгеновской дифракции установлено, что полученные плёнки халькогенидов имеют подобную сфалериту кристаллическую структуру. Для кубической модификации Cu2SnS3 и Cu2SnSe3 преимущественными плоскостями отражений являются (111), (220) и (311). Элементный состав плёнок соответствует стехиометрии соединений Cu2SnS3 и Cu2SnSe3. Методом ИК-спектроскопии определены энергии активации прямозонных переходов для Cu2SnS3 – 0.96 eV, а для Cu2SnSe3 – 0.70 eV.   ИСТОЧНИК ФИНАНСИРОВАНИЯ Работа выполнена при финансовой поддержке гранта РФФИ № 18-32-00971 – мол_а.   ЛИТЕРАТУРА Milichko V. A., Shalin A. S., Mukhin I. S., et al. Usp., 2016, vol. 59, pp. 727–772. https://doi.org/10.3367/ufne.2016.02.037703 Wesley Herche. Renewable and Sustainable Energy Reviews, 2017, vol. 77, pp. 590-595. https://doi.org/10.1016/j.rser.2017.04.028 Rujun Suna, Daming Zhuang, Ming Zhao, et al. Solar Energy Materials and Solar Cells, 2018, vol. 174, pp. 42–49. https://doi.org/10.1016/j.solmat.2017.08.011 Orletskii I. G., Mar’yanchuk P. D., Solovan M. N., et al. Physics of the Solid State, 2016. vol. 58, no. 5, pp. 1058-1064. https://doi.org/10.1134/s1063783416050188  Ren Y. Acta Universitatis Upsaliensis, Uppsala, 2017, 85 p. URL: https://uu.diva-portal.org/smash/get/diva2:1072439/FULLTEXT01.pdf Lokhande A. C. Solar Energy Materials and Solar Cells, August 2016, vol. 153, pp. 84-107. https://doi.org/10.1016/j.solmat.2016.04.003 Shelke H. D., Lokhande A. C., Patil A. M., et al. Surfaces and Interfaces, 2017, vol. 9, pp. 238-244. https://doi.org/10.1016/j.surfin.2017.08.006 Orletskii I. G., Solovan M. N., Pinna F., et al. Physics of the Solid State. 2017, vol. 59, no. 4, pp. 801-807. https://doi.org/10.1134/s1063783417040163 Mingrui He. Journal of Alloys and Compounds, April 2017, vol. 701, pp. 901-908. https://doi.org/10.1016/j.jallcom.2017.01.191  Pin-Wen, GuanShun-Li Shang, Greta Lindwall. Solar Energy, 2017, vol. 155, pp. 745-757. https://doi.org/10.1016/j.solener.2017.07.017  Ju Yeon Lee. Solar Energy, 2017, vol. 145, pp. 27-32. https://doi.org/10.1016/j.solener.2016.09.041 Subbotina, O. Y., Kishkoparov N. V., Frishberg I. V. High Temperature, 1999, vol. 37, no. 2, pp. 198–203. URL: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvt&paperid=2266&option_lang=rus (in Russ.) Budanov A. V., Vlasov Yu. N., Grechkina M. V., et al. Condensed Matter and Interphases, 2016, vol. 18, no. 4, pp. 481–486. URL: http://www.kcmf.vsu.ru/resources/t_18_4_2016_004.pdf (in Russ.) Zhang, Huang L. L., Zhu X. G., et al. Scripta Materialia, 2019, vol. 159, pp. 46–50. https://doi.org/10.1016/j.scriptamat.2018.09.010 Lukashev P., Lambrecht W. R. L., Kotani T., Schilfgaarde M. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, p. 195202. https://doi.org/10.1103/physrevb.76.195202  


Author(s):  
T. J. Magee ◽  
J. Peng ◽  
J. Bean

Cadmium telluride has become increasingly important in a number of technological applications, particularly in the area of laser-optical components and solid state devices, Microstructural characterizations of the material have in the past been somewhat limited because of the lack of suitable sample preparation and thinning techniques. Utilizing a modified jet thinning apparatus and a potassium dichromate-sulfuric acid thinning solution, a procedure has now been developed for obtaining thin contamination-free samples for TEM examination.


Sign in / Sign up

Export Citation Format

Share Document