Tethering-based chemogenetic approaches for the modulation of protein function in live cells

2021 ◽  
Author(s):  
Yu-Hsuan Tsai ◽  
Tomohiro Doura ◽  
Shigeki Kiyonaka

Approaches for selective and rapid modulation are ideal for investigating the physiological roles of proteins. This review focuses on chemogenetic approaches in which designer molecules are attached to the target protein for the modulation of proteins in live cells.


2008 ◽  
Vol 105 (46) ◽  
pp. 17700-17705 ◽  
Author(s):  
Richard Llewellyn ◽  
David S. Eisenberg

As genome sequencing outstrips the rate of high-quality, low-throughput biochemical and genetic experimentation, accurate annotation of protein function becomes a bottleneck in the progress of the biomolecular sciences. Most gene products are now annotated by homology, in which an experimentally determined function is applied to a similar sequence. This procedure becomes error-prone between more divergent sequences and can contaminate biomolecular databases. Here, we propose a computational method of assignment of function, termed Generalized Functional Linkages (GFL), that combines nonhomology-based methods with other types of data. Functional linkages describe pairwise relationships between proteins that work together to perform a biological task. GFL provides a Bayesian framework that improves annotation by arbitrating a competition among biological process annotations to best describe the target protein. GFL addresses the unequal strengths of functional linkages among proteins, the quality of existing annotations, and the similarity among them while incorporating available knowledge about the cellular location or individual molecular function of the target protein. We demonstrate GFL with functional linkages defined by an algorithm known as zorch that quantifies connectivity in protein–protein interaction networks. Even when using proteins linked only by indirect or high-throughput interactions, GFL predicts the biological processes of many proteins in Saccharomyces cerevisiae, improving the accuracy of annotation by 20% over majority voting.



2001 ◽  
Vol 21 (16) ◽  
pp. 5312-5320 ◽  
Author(s):  
Anna Polesskaya ◽  
Irina Naguibneva ◽  
Arnaud Duquet ◽  
Eyal Bengal ◽  
Philippe Robin ◽  
...  

ABSTRACT Acetylation is emerging as a posttranslational modification of nuclear proteins that is essential to the regulation of transcription and that modifies transcription factor affinity for binding sites on DNA, stability, and/or nuclear localization. Here, we present both in vitro and in vivo evidence that acetylation increases the affinity of myogenic factor MyoD for acetyltransferases CBP and p300. In myogenic cells, the fraction of endogenous MyoD that is acetylated was found associated with CBP or p300. In vitro, the interaction between MyoD and CBP was more resistant to high salt concentrations and was detected with lower doses of MyoD when MyoD was acetylated. Interestingly, an analysis of CBP mutants revealed that the interaction with acetylated MyoD involves the bromodomain of CBP. In live cells, MyoD mutants that cannot be acetylated did not associate with CBP or p300 and were strongly impaired in their ability to cooperate with CBP for transcriptional activation of a muscle creatine kinase-luciferase construct. Taken together, our data suggest a new mechanism for activation of protein function by acetylation and demonstrate for the first time an acetylation-dependent interaction between the bromodomain of CBP and a nonhistone protein.



2014 ◽  
Vol 12 (9) ◽  
pp. 1412-1418 ◽  
Author(s):  
Katsunori Tanaka ◽  
Masataka Kitadani ◽  
Ayumi Tsutsui ◽  
Ambara R. Pradipta ◽  
Rie Imamaki ◽  
...  

A general probe designed to induce a cascading sequence of reactions on a target protein was efficiently synthesized.



2014 ◽  
Vol 25 (22) ◽  
pp. 3610-3618 ◽  
Author(s):  
Robert Mahen ◽  
Birgit Koch ◽  
Malte Wachsmuth ◽  
Antonio Z. Politi ◽  
Alexis Perez-Gonzalez ◽  
...  

Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells.



Author(s):  
Luisa Lopez-Ochoa ◽  
Tara E. Nash ◽  
Jorge Ramirez-Prado ◽  
Linda Hanley-Bowdoin


2017 ◽  
Vol 30 (12) ◽  
pp. 771-780 ◽  
Author(s):  
M Hinrichsen ◽  
M Lenz ◽  
J M Edwards ◽  
O K Miller ◽  
S G J Mochrie ◽  
...  

AbstractWe present a novel method to fluorescently label proteins, post-translationally, within live Saccharomycescerevisiae. The premise underlying this work is that fluorescent protein (FP) tags are less disruptive to normal processing and function when they are attached post-translationally, because target proteins are allowed to fold properly and reach their final subcellular location before being labeled. We accomplish this post-translational labeling by expressing the target protein fused to a short peptide tag (SpyTag), which is then covalently labeled in situ by controlled expression of an open isopeptide domain (SpyoIPD, a more stable derivative of the SpyCatcher protein) fused to an FP. The formation of a covalent bond between SpyTag and SpyoIPD attaches the FP to the target protein. We demonstrate the general applicability of this strategy by labeling several yeast proteins. Importantly, we show that labeling the membrane protein Pma1 in this manner avoids the mislocalization and growth impairment that occur when Pma1 is genetically fused to an FP. We also demonstrate that this strategy enables a novel approach to spatiotemporal tracking in single cells and we develop a Bayesian analysis to determine the protein’s turnover time from such data.



2014 ◽  
Vol 53 (38) ◽  
pp. 10049-10055 ◽  
Author(s):  
Peng Liu ◽  
Abram Calderon ◽  
Georgios Konstantinidis ◽  
Jian Hou ◽  
Stephanie Voss ◽  
...  


Author(s):  
Yuri Prozzillo ◽  
Gaia Fattorini ◽  
Maria Virginia Santopietro ◽  
Luigi Suglia ◽  
Alessandra Ruggiero ◽  
...  

Targeted Protein Silencing (TPS) is an elegant approach to investigate protein function and its role in the cellular landscape, overcoming limitations of genetic perturbation strategies. In contrast to CRISPR/Cas9 and RNA interference, these systems act in a reversible manner and reduce off-target effects. Several TPS have been developed and wisely improved, including compartment delocalization tools and protein degradation systems. In this review, we focus on Anchor-Away, deGradFP, auxin inducible degron (AID) and dTAG technologies, and discuss their recent applications and advances. Finally, we propose Nano-Grad, a novel nanobody-based protein degradation tool to specifically proteolyze endogenous tag-free target protein.



2021 ◽  
Author(s):  
Nathan H. Cho ◽  
Keith C. Cheveralls ◽  
Andreas-David Brunner ◽  
Kibeom Kim ◽  
Andre C. Michaelis ◽  
...  

Elucidating the wiring diagram of the human cell is one of the central goals of the post-genomic era. Here, we integrate genome engineering, confocal imaging, mass spectrometry and data science to systematically map protein localization in live cells and protein interactions under endogenous expression conditions. For this, we generated a library of 1,311 CRISPR-edited cell lines harboring fluorescent tags that also serve as handles for affinity capture, and applied a new machine learning framework to encode the interaction and localization profiles of each protein. Our approach provides a data-driven description of the molecular and spatial networks that organize the human proteome. We show that unsupervised clustering of these networks delineates functional groups and facilitates biological discovery, while hierarchical analyses uncover the core features that template cellular architecture. Furthermore, we discover that localization signatures are remarkably predictive of protein function, and often contain enough information to identify molecular interactions. Paired with a fully interactive website (opencell.czbiohub.org), OpenCell is a resource for the quantitative cartography of human cellular organization.



Sign in / Sign up

Export Citation Format

Share Document