peptide aptamers
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 3)

H-INDEX

28
(FIVE YEARS 0)

2021 ◽  
Vol 12 (9) ◽  
pp. 1427-1434
Author(s):  
Hiroki Anzai ◽  
Takuya Terai ◽  
Kanako Wakabayashi-Nakao ◽  
Taro Noguchi ◽  
Shigefumi Kumachi ◽  
...  


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 691
Author(s):  
Nikita Sitkov ◽  
Tatiana Zimina ◽  
Alexander Kolobov ◽  
Vladimir Karasev ◽  
Alexander Romanov ◽  
...  

The problems of chronic or noncommunicable diseases (NCD) that now kill around 40 million people each year require multiparametric combinatorial diagnostics for the selection of effective treatment tactics. This could be implemented using the biosensor principle based on peptide aptamers for spatial recognition of corresponding protein markers of diseases in biological fluids. In this paper, a low-cost label-free principle of biomarker detection using a biosensor system based on fluorometric registration of the target proteins bound to peptide aptamers was investigated. The main detection principle considered includes the re-emission of the natural fluorescence of selectively bound protein markers into a longer-wavelength radiation easily detectable by common charge-coupled devices (CCD) using a specific luminophore. Implementation of this type of detection system demands the reduction of all types of stray light and background fluorescence of construction materials and aptamers. The latter was achieved by careful selection of materials and design of peptide aptamers with substituted aromatic amino acid residues and considering troponin T, troponin I, and bovine serum albumin as an example. The peptide aptamers for troponin T were designed in silico using the «Protein 3D» (SPB ETU, St. Petersburg, Russia) software. The luminophore was selected from the line of ZnS-based solid-state compounds. The test microfluidic system was arranged as a flow through a massive of four working chambers for immobilization of peptide aptamers, coupled with the optical detection system, based on thick film technology. The planar optical setup of the biosensor registration system was arranged as an excitation-emission cascade including 280 nm ultraviolet (UV) light-emitting diode (LED), polypropylene (PP) UV transparent film, proteins layer, glass filter, luminophore layer, and CCD sensor. A laboratory sample has been created.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daiki Kashima ◽  
Masahiro Kawahara

AbstractChimeric proteins have been widely used to evaluate intracellular protein–protein interactions (PPIs) in living cells with various readouts. By combining an interleukin-3-dependent murine cells and chimeric proteins containing a receptor tyrosine kinase c-kit, we previously established a c-kit-based PPI screening (KIPPIS) system to evaluate and select protein binders. In the KIPPIS components, proteins of interest are connected with a chemically inducible helper module and the intracellular domain of the growth-signaling receptor c-kit, which detects PPIs based on cell proliferation as a readout. In this system, proteins of interest can be incorporated into chimeric proteins without any scaffold proteins, which would be advantageous for evaluating interaction between small peptides/domains. To prove this superiority, we apply KIPPIS to 6 peptide aptamer–polypeptide pairs, which are derived from endogenous, synthetic, and viral proteins. Consequently, all of the 6 peptide aptamer–polypeptide interactions are successfully detected by cell proliferation. The detection sensitivity can be modulated in a helper ligand-dependent manner. The assay results of KIPPIS correlate with the activation levels of Src, which is located downstream of c-kit-mediated signal transduction. Control experiments reveal that KIPPIS clearly discriminates interacting aptamers from non-interacting ones. Thus, KIPPIS proves to be a versatile platform for evaluating the binding properties of peptide aptamers.



Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6055
Author(s):  
Roger R. C. New ◽  
Tam T. T. Bui ◽  
Michal Bogus

Peptide aptamers are short amino acid chains that are capable of binding specifically to ligands in the same way as their much larger counterparts, antibodies. Ligands of therapeutic interest that can be targeted are other peptide chains or loops located on the surface of protein receptors (e.g., GCPR), which take part in cell-to-cell communications either directly or via the intermediary of hormones or signalling molecules. To confer on aptamers the same sort of conformational rigidity that characterises an antibody binding site, aptamers are often constructed in the form of cyclic peptides, on the assumption that this will encourage stronger binding interactions than would occur if the aptamers were simply linear chains. However, no formal studies have been conducted to confirm the hypothesis that linear peptides will engage in stronger binding interactions with cyclic peptides than with other linear peptides. In this study, the interaction of a model cyclic decamer with a series of linear peptide constructs was compared with that of a linear peptide with the same sequence, showing that the cyclic configuration does confer benefits by increasing the strength of binding.



Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 8
Author(s):  
Nikita Sitkov ◽  
Tatiana Zimina ◽  
Vladimir Karasev ◽  
Olesya Naretskaya ◽  
Margarita Kiseleva

Acute cardiovascular conditions require prompt assistance, which depends on a timely and accurate diagnosis. This could be achieved by using biosensor systems based on peptide aptamers capable of selectively binding protein markers of diseases. In this work, a label-free biosensor system based on fluorometric registration of the formation of a “peptide aptamer—target protein” complex is considered. It comprises a microfluidic subsystem integrated with arrays of sites with immobilized peptide aptamers, coupled with an optical detection system. The clinical sample of the whole blood is loaded into the inlet basin, where the cells are separated and plasma flows into the microfluidic channel for analysis. Peptide aptamers were created using the molecular complement search technique based on the search for systems of conjugated ion-hydrogen bonds in the three-dimensional structures of target proteins. The technology for manufacturing a microfluidic chip is a combination of thick-film and photolithography technologies based on the SU-8 photoresist, for which the relief and surface morphology have been studied. The composition of the biochip layers is selected in such a way that ultraviolet light with a wavelength of 280 nm passes through an inlet window, excites fluorescence inside the channel, which passes through the glass window, which absorbs UV-light. This wavelength accounts for the maximum absorption of aromatic amino acids—tyrosine and tryptophan. In this case, one of the last layers is a luminophore layer for re-emission of protein fluorescence as a visible light. The reading platform includes a 280 nm LED, a video sensor, 3D-printed PLA tooling, and software for processing and analyzing the received signal.





2020 ◽  
Vol 609 ◽  
pp. 113921
Author(s):  
Sang-Heon Kim ◽  
Eun-Hye Lee ◽  
Sang-Choon Lee ◽  
A-Ru Kim ◽  
Hyun-Hee Park ◽  
...  


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1472
Author(s):  
Takuya Terai ◽  
Tomoyuki Koike ◽  
Naoto Nemoto

Binding peptides for given target molecules are often selected in vitro during drug discovery and chemical biology research. Among several display technologies for this purpose, complementary DNA (cDNA) display (a covalent complex of a peptide and its encoding cDNA linked via a specially designed puromycin-conjugated DNA) is unique in terms of library size, chemical stability, and flexibility of modification. However, selection of cDNA display libraries often suffers from false positives derived from non-specific binding. Although rigorous washing is a straightforward solution, this also leads to the loss of specific binders with moderate affinity because the interaction is non-covalent. To address this issue, herein, we propose a method to covalently link cDNA display molecules with their target proteins using light irradiation. We designed a new puromycin DNA linker that contains a photocrosslinking nucleic acid and prepared cDNA display molecules using the linker. Target proteins were also labeled with a short single-stranded DNA that should transiently hybridize with the linker. Upon ultraviolet (UV) light irradiation, cDNA display molecules encoding correct peptide aptamers made stable crosslinked products with the target proteins in solution, while display molecules encoding control peptides did not. Although further optimization and improvement is necessary, the results pave the way for efficient selection of peptide aptamers in multimolecular crowding biosystems.



2020 ◽  
Vol 28 (3) ◽  
pp. 901-913 ◽  
Author(s):  
Kuancan Liu ◽  
Fuan Xie ◽  
Tingting Zhao ◽  
Rui Zhang ◽  
Anding Gao ◽  
...  


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Rhushabh Maugi ◽  
Zarina Salkenova ◽  
Mark Platt


Sign in / Sign up

Export Citation Format

Share Document