A bio-inspired mononuclear manganese catalyst for high-rate electrochemical hydrogen production

2021 ◽  
Vol 50 (14) ◽  
pp. 4783-4788
Author(s):  
Jie Yang ◽  
Shuanglin He ◽  
Qianqian Wu ◽  
Ping Zhang ◽  
Lin Chen ◽  
...  

A bio-inspired manganese molecular catalyst featuring an intramolecular aniline as a proton relay was synthesized and used for hydrogen production. Electrochemical measurements with this complex show excellent activity (turnover frequency over 104 s−1).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. M. Silva ◽  
A. A. Abreu ◽  
A. F. Salvador ◽  
M. M. Alves ◽  
I. C. Neves ◽  
...  

AbstractThermophilic biohydrogen production by dark fermentation from a mixture (1:1) of C5 (arabinose) and C6 (glucose) sugars, present in lignocellulosic hydrolysates, and from Sargassum sp. biomass, is studied in this work in batch assays and also in a continuous reactor experiment. Pursuing the interest of studying interactions between inorganic materials (adsorbents, conductive and others) and anaerobic bacteria, the biological processes were amended with variable amounts of a zeolite type-13X in the range of zeolite/inoculum (in VS) ratios (Z/I) of 0.065–0.26 g g−1. In the batch assays, the presence of the zeolite was beneficial to increase the hydrogen titer by 15–21% with C5 and C6-sugars as compared to the control, and an increase of 27% was observed in the batch fermentation of Sargassum sp. Hydrogen yields also increased by 10–26% with sugars in the presence of the zeolite. The rate of hydrogen production increased linearly with the Z/I ratios in the experiments with C5 and C6-sugars. In the batch assay with Sargassum sp., there was an optimum value of Z/I of 0.13 g g−1 where the H2 production rate observed was the highest, although all values were in a narrow range between 3.21 and 4.19 mmol L−1 day−1. The positive effect of the zeolite was also observed in a continuous high-rate reactor fed with C5 and C6-sugars. The increase of the organic loading rate (OLR) from 8.8 to 17.6 kg m−3 day−1 of COD led to lower hydrogen production rates but, upon zeolite addition (0.26 g g−1 VS inoculum), the hydrogen production increased significantly from 143 to 413 mL L−1 day−1. Interestingly, the presence of zeolite in the continuous operation had a remarkable impact in the microbial community and in the profile of fermentation products. The effect of zeolite could be related to several properties, including the porous structure and the associated surface area available for bacterial adhesion, potential release of trace elements, ion-exchanger capacity or ability to adsorb different compounds (i.e. protons). The observations opens novel perspectives and will stimulate further research not only in biohydrogen production, but broadly in the field of interactions between bacteria and inorganic materials.


2021 ◽  
Author(s):  
Mohamed Mohamed ◽  
Mahmoud M. Hessien ◽  
Mohamed M. Ibrahim

Abstract Nanosphere and nanotube titanates (TNT) amalgamated with different graphene oxide (GO) ratios synthesized by one pot microwave irradiation route have presented excellent potential towards hydrogen production photoelectrochemically under solar irradiation. The hybrid nanospherical array of the 50TNT-50GO photocatalyst showed a current density equal 9.2 mA cm-2 at a bias of 0.20 V vs. RHE exceeding those of the nanotubes 30TNT-70GO (4.0 mA cm-2 at 0.38 V) and 10TNT-90GO (3.7 mA cm-2 at 0.4 V). The former electrode also exhibits small Tafel slope value (40 mV dec-1), decreased particle diameter (7 nm), decreased band gap (2.6 eV) and high rate of charges transfer. The hybrid structure elucidation carried out using TEM-SAED, XRD, N2 adsorption, UV-Vis, FTIR and PL techniques approved the interfacial interaction between TNT and GO(RGO) networks that was responsible for the high quantum yield, delay of charges recombination beside the increase in the pore volume.


2015 ◽  
Vol 44 (40) ◽  
pp. 17704-17711 ◽  
Author(s):  
Junfei Wang ◽  
Chao Li ◽  
Qianxiong Zhou ◽  
Weibo Wang ◽  
Yuanjun Hou ◽  
...  

[Co(iii)(dmgH)2(py-m-CH2CH2COOH)Cl] showed a much improved photocatalytic H2 production activity compared to Co(iii)(dmgH)2(py)Cl], and the COOH group may serve as a proton relay to account for its promising performance.


2015 ◽  
Vol 112 (22) ◽  
pp. 6882-6886 ◽  
Author(s):  
Cyrille Costentin ◽  
Marc Robert ◽  
Jean-Michel Savéant ◽  
Arnaud Tatin

Substitution of the four paraphenyl hydrogens of iron tetraphenylporphyrin by trimethylammonio groups provides a water-soluble molecule able to catalyze the electrochemical conversion of carbon dioxide into carbon monoxide. The reaction, performed in pH-neutral water, forms quasi-exclusively carbon monoxide with very little production of hydrogen, despite partial equilibration of CO2 with carbonic acid—a low pKa acid. This selective molecular catalyst is endowed with a good stability and a high turnover frequency. On this basis, prescribed composition of CO–H2 mixtures can be obtained by adjusting the pH of the solution, optionally adding an electroinactive buffer. The development of these strategies will be greatly facilitated by the fact that one operates in water. The same applies for the association of the cathode compartment with a proton-producing anode by means of a suitable separator.


2021 ◽  
Vol 320 ◽  
pp. 124279
Author(s):  
Ju-Hyeong Jung ◽  
Young-Bo Sim ◽  
Jong-Hyun Baik ◽  
Jong-Hun Park ◽  
Sang-Hyoun Kim

2022 ◽  
Author(s):  
Xiyu Deng ◽  
Xinya Kuang ◽  
Jiyang Zeng ◽  
Baoye Zi ◽  
Yiwen Ma ◽  
...  

Abstract Photocatalytic water splitting is considered to be a feasible method to replace traditional energy. However, most of the catalysts have unsatisfactory performance. In this work, we used a hydrothermal process to grow Ag nanoparticles in situ on g-C3N4 nanosheets, and then a high performance catalyst (Ag- g-C3N4) under visible light was obtained. The Ag nanoparticles obtained by this process are amorphous and exhibit excellent catalytic activity. At the same time, the local plasmon resonance effect of Ag can effectively enhance the absorption intensity of visible light by the catalyst. The hydrogen production rate promote to 1035 μmol g-1h-1 after loaded 0.6 wt% of Ag under the visible light, which was 313 times higher than that of pure g-C3N4 (3.3μmol g-1h-1). This hydrogen production rate is higher than most previously reported catalysts which loaded with Ag or Pt. The excellent activity of Ag- g-C3N4 is benefited from the Ag nanoparticles and special interaction in each other. Through various analysis and characterization methods, it is shown that the synergy between Ag and g-C3N4 can effectively promote the separation of carriers and the transfer of electrons. Our work proves that Ag- g-C3N4 is a promising catalyst to make full use of solar energy.


Sign in / Sign up

Export Citation Format

Share Document