High-sensitivity and wide-temperature-range dual-mode optical thermometry under dual-wavelength excitation in novel double perovskite tellurate oxide

2021 ◽  
Author(s):  
Zhaojie Wu ◽  
Li Li ◽  
Guang Tian ◽  
Yongjie Wang ◽  
Faling Ling ◽  
...  

Novel double perovskite SrLaLiTeO6 (abbreviated as SLLT): Mn4+, Dy3+ phosphors synthesized by solid-state reaction strategy exhibits distinct dual-emitting of Mn4+ and Dy3+. High-sensitivity and wide-temperature-range dual-mode optical thermometry was exploited...

2019 ◽  
Vol 48 (13) ◽  
pp. 4405-4412 ◽  
Author(s):  
Weiguang Ran ◽  
Hyeon Mi Noh ◽  
Sung Heum Park ◽  
Bo Ram Lee ◽  
Jung Hwan Kim ◽  
...  

High intensity and high sensitivity properties indicate that NaLaMgWO6:Er3+ phosphors have great potential for use in solid-state lighting and optical temperature sensors.


2018 ◽  
Vol 6 (41) ◽  
pp. 11178-11183 ◽  
Author(s):  
Yan Gao ◽  
Yao Cheng ◽  
Tao Hu ◽  
Zeliang Ji ◽  
Hang Lin ◽  
...  

This study highlights a highly sensitive dual-mode optical thermometer Pr3+:Gd2ZnTiO6 for thermal readings over a wide range of temperature.


2017 ◽  
Vol 5 (47) ◽  
pp. 24677-24685 ◽  
Author(s):  
Renjie Chen ◽  
Wenjie Qu ◽  
Ji Qian ◽  
Nan Chen ◽  
Yujuan Dai ◽  
...  

We fabricate a high-safety solid-state electrolyte by in situ immobilizing ionic liquids within a nanoporous zirconia-supported matrix.


Author(s):  
Wei Tang ◽  
Chuandong Zuo ◽  
Yingkui Li ◽  
Chaoyang Ma ◽  
Xuanyi Yuan ◽  
...  

Compared to glasses and single crystals, transparent ceramics present extraordinarily large resistance to thermal shocks. Here, dual-mode LIR/FL temperature detection with a wide temperature range is realized with BZMT:Pr3+transparent ceramic.


2019 ◽  
Vol 891 ◽  
pp. 224-229
Author(s):  
Naphat Albutt ◽  
Vanussanun Aitviriyaphan ◽  
Thanapong Sareein ◽  
Sudarath Suntaropas ◽  
Panakamon Thonglor ◽  
...  

The magnetic properties of Ba2FeMoO6 (BFMO) double perovskite are investigated. BFMO samples were prepared by solid state reaction method through compression. Magnetic properties are influenced by electron environments of the Fe3+ and Mo5+ ions within the perovskite structure. BFMO sintered at 800 oC exhibited the largest hysteresis loop at 50 K. In addition, the values of Ms and Mr indicate ferromagnetic behaviour in BFMO ceramics sintered at 800 oC for different times up to 10 hours. Using the Curie-Weiss law fitting to investigate μeff~30μB high spin of Fe and Mo, and negative θ present the antiferromagnetic characteristics of the BFMO sample.


2021 ◽  
Vol 853 ◽  
pp. 157262
Author(s):  
Yanting Zhu ◽  
Chenxia Li ◽  
Degang Deng ◽  
Bowen Chen ◽  
Hua Yu ◽  
...  

2008 ◽  
Vol 54 ◽  
pp. 211-215 ◽  
Author(s):  
Takeo Uesugi ◽  
Hitoshi Kohri ◽  
Ichiro Shiota ◽  
Masahiko Kato ◽  
Isao J. Ohsugi

Ca3Co4O9 is a promising material for thermoelectric generation, as it is stable up to 1173 K in the air, and shows good thermoelectric properties. Recently, it was found that Ca3Co2O6 was stable up to 1300 K in the air. The Ca3Co2O6 is decomposed phase of Ca3Co4O9 and the temperature limit is higher than one of Ca3Co4O9. The electrical resistivity of Ca3Co2O6 was, however, higher than the one of Ca3Co4O9. Not only high power generation performances but also excellent strength is required for practical use of the thermoelectric oxide materials. Polycrystalline samples of Ca3Co2O6 were prepared by solid-state reaction (SSR) and hot pressing (HP). Relative density of Ca3Co2O6 (HP) was over 98%, which is larger than the one of Ca3Co2O6 (SSR). Ca3Co2O6 (HP) showed larger strength and lower resistivity than Ca3Co2O6 (SSR). The resistivity (ρ) of Ca3Co2O6 (HP) in perpendicular to the pressurized direction decreased from 64 Ωcm to 4.0×10-2 Ωcm at the temperature range between 373 and 1173 K. In addition, the resistivity of this sample was decreased by heat treatment in the air. The Seebeck coefficients (S) of Ca3Co2O6 (HP) was positive value and more than 160 μVK-1 at the temperature range between 373 and 1173 K. Ca3Co1.8M0.2O6 (M= Mn or V) were prepared by solid state reaction and hot pressing. The resistivity of Mn-substituted Ca3Co2O6 (HP-Mn) and V-substituted Ca3Co2O6 (HP-V) were lower than the one of non-substituted Ca3Co2O6 (HP) at the temperature below 523 K for the Mn-substituted sample or 723 K for V-substituted sample. The latter showed the lowest value 1.53 Ωcm of all specimens at 383 K. The power factor (S2ρ-1) of Ca3Co2O6 (HP) was 88.3 μWm-1K-2, which is the largest of all specimens at 1176 K, but S2ρ-1 of V-substituted Ca3Co2O6 (HP-V) is the largest of all specimens up to 773 K.


1991 ◽  
Vol 238 ◽  
Author(s):  
Z. Lu ◽  
D. Chen ◽  
R. M. Osgood ◽  
D. V. Podlesnik

ABSTRACTIn this paper, we will present a study of the thermal reaction of AsjOs with GaAs at temperatures below 550°C using monochromatic X-ray photoelectron spectroscopy (MXPS). A solid-state interface reaction of 4GaAs + 3AS2O5 → 2Ga2O3 + 3AS2O3 + 4As, which includes the usual native oxide thermal reaction: 2GaAs + AS2O3 → Ga2O3 + 4As, as well as a decomposition reaction AS2O5 → AS2O3 + O2 is responsible for the thermal reaction in this temperature range.


Sign in / Sign up

Export Citation Format

Share Document