scholarly journals Hypertension- and glycaemia-lowering effects of a grape-pomace-derived seasoning in patients and healthy volunteers. Interplay with the gut microbiome

2022 ◽  
Author(s):  
Diego Taladrid ◽  
Miguel de Celis ◽  
Ignacio Belda ◽  
Begoña Bartolome ◽  
M. Victoria Moreno-Arribas

Grape pomace (GP) is a winery by-product rich in polyphenols and dietary fibre. Recently, GP-derived seasonings have emerged as promising additives in food, specially recommended for low-salt diets. The hypothesis...

2020 ◽  
Vol 5 (3) ◽  
pp. S221
Author(s):  
Y. Liu ◽  
Y. LI ◽  
Y.W. Loh ◽  
J. Singer ◽  
L. Macia ◽  
...  

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Maria Choleva ◽  
Maria Tsota ◽  
Vassiliki Boulougouri ◽  
Anthi Panara ◽  
Nikolaos S. Thomaidis ◽  
...  

AbstractPrevious reports support that wine contains a mixture of micro-constituents in a proper quality and quantity that possess cardio-protective effect partly through Platelet-Activating Factor (PAF) inhibition. Grape pomace (GP) is a source of wine-like micro-constituents that may be a suitable alternative in food fortification. Limited data exist concerning their effects on thrombosis and inflammation. Therefore, the purpose of this study was to examine a grape pomace extract regarding its anti-platelet and anti-inflammatory properties. GP from four red grape varieties were extracted with 80% ethanol (GP:solvent 1:5w/v). The extract's total phenolic compounds were evaluated and the phenolic profile was performed by Ultrahigh-Performance-Liquid-Chromatography coupled to Mass-Spectrometry and the determination of fatty acids profile was performed by Gas-Chromatography. The extract's anti-platelet properties were tested in healthy volunteers’ platelet rich plasma by the light transmittance method, against three agonists: PAF, ADP and TRAP. The results expressed as IC50 values (μg of extract that cause 50% inhibition of aggregation) and EC50 values (agonist concentration that causes 50% of the maximum aggregation) in the extract's presence and absence. Concerning the extract's anti-inflammatory properties, peripheral blood mononuclear cells from healthy volunteers were pre-incubated with different extract concentrations, which were tested for their effect on cell viability, for 1 h and then stimulated with LPS for 4 h. Secretion of IL-1β and TNF-a was measured and normalized with the total cell protein. Phenolic compounds were calculated at 8.79 ± 1.17 mg gallic acid per g of GP. The most abundant ones were catechin, epicatechin and quercetin at 202.9 ± 6.9, 84.8 ± 1.5 and 83.7 ± 3.5μg per g of GP respectively. Out of the 18 fatty acids detected, the most abundant ones were palmitic, oleic, linoleic, and linolenic acid at 28.7 ± 0.1, 11.4 ± 0.01, 32.5 ± 0.07, 12.7 ± 0.005 g per 100 g of fat. The extract's IC50 was calculated at 162.1 ± 66.9, 181.2 ± 82.3 and 156.3 ± 97.5μg against PAF, ADP and TRAP, respectively. The EC50 values in the presence of 150μg extract were increased (lower platelet aggregation sensitivity) approximately at 100%, 45% and 13% against PAF, ADP and TRAP respectively, compared to EC50 values in the absence of extract. The presence of 500 and 1000μg/mL of extract reduced LPS-induced TNF-a secretion at approximately 38.2% (p = 0.04) and 6.0% (p < 0.000), respectively. Potent anti-platelet and anti-inflammatory properties are combined in a grape pomace extract. The use of its bioactive micro-constituents is likely to lead to the production of functional foods with cardioprotective properties.


2019 ◽  
Vol 56 ◽  
pp. 276-285 ◽  
Author(s):  
Carolina Beres ◽  
Suely Pereira Freitas ◽  
Ronoel Luiz de Oliveira Godoy ◽  
Denize Cristine Rodrigues de Oliveira ◽  
Rosires Deliza ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Kouki Taniguchi ◽  
Satoshi Nagase ◽  
Shigehiro Karashima ◽  
Mitsuhiro Kometani ◽  
Daisuke Aono ◽  
...  

Abstract Salt intake is one of most important environmental factors responsible for triggering the onset of hypertension. Renin-angiotensin-aldosterone system (RAAS) plays a key role in adjusting sodium homeostasis and blood pressure. Recently, the potential role of the gut microbiome (GM) in altering the health of the host has drawn considerable attention. We investigated the impact of intestinal microflora and RAAS in hypertensive patients with low-salt or high-salt intake using an observational study. A total of 239 participants were enrolled and their GMs and clinical backgrounds examined, including the renin-angiotensin-aldosterone system and inflammatory cytokine levels. On the basis of enterotypes—determined by cluster analysis—and salt intake, the participants were classified into four groups, low salt/GM enterotype 1, low salt/GM enterotype 2, high salt/GM enterotype 1, and high salt/GM enterotype 2. The prevalence of hypertension was significantly lower in the low-salt intake (low salt/GM enterotype 1 = 47% vs low salt/GM enterotype 2 = 27%, p = 0.04) groups. No significant difference in the prevalence of hypertension was observed for the two GM enterotype groups with high-salt intake (GM enterotype 1 = 50%, GM enterotype 2 = 47%; p = 0.83). Plasma aldosterone concentration was significantly different among the four groups (p &lt; 0.01). Furthermore, the relative abundance of Blautia, Bifidobacterium, Escherichia-Shigella, Lachnoclostridium, and Clostridium sensu stricto was also significantly different among these enterotypes. This suggested in certain individuals (with specific gut bacteria composition) changing dietary habits—to low salt—would be ineffective for regulating hypertension through RAAS. Our findings provide a new strategy for controlling blood pressure and preventing the development of hypertension through restoring GM homeostasis.


2016 ◽  
Vol 201 ◽  
pp. 145-152 ◽  
Author(s):  
Carolina Beres ◽  
Fernanda F. Simas-Tosin ◽  
Ignacio Cabezudo ◽  
Suely P. Freitas ◽  
Marcello Iacomini ◽  
...  

Gut Microbes ◽  
2014 ◽  
Vol 5 (4) ◽  
pp. 458-467 ◽  
Author(s):  
Kumar Pallav ◽  
Scot E Dowd ◽  
Javier Villafuerte ◽  
Xiaotong Yang ◽  
Toufic Kabbani ◽  
...  

Author(s):  
Feng Zhao ◽  
Rui An ◽  
Liqian Wang ◽  
Jikang Shan ◽  
Xianjun Wang

BackgroundLung cancer (LC) is one of the most aggressive, prevalent and fatal malignancies. Gut microbes and their associated metabolites are thought to cause and modulate LC development, albeit influenced by the host genetic make-up and environment. Herein, we identified and classified gut microbiota and serum metabolites associated with LC.MethodsStool samples were collected from 41 LC patients and 40 healthy volunteers. The gut microbiota was analyzed using 16S rRNA gene sequencing. Serum samples were collected from the same LC patients (n=30) and healthy volunteers (n=30) and serum metabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). Microbiome and metabolome data were analyzed separately and integrated for combined analysis using various bioinformatics methods.ResultsSerum metabolomics uncovered 870 metabolites regulated in 76 metabolic pathways in both groups. Microbial diversity analyses identified 15967 operational taxonomic units (OTUs) in groups. Of these, the abundance of 232 OTUs was significantly different between HC and LC groups. Also, serum levels of glycerophospholipids (LysoPE 18:3, LysoPC 14:0, LysoPC 18:3), Imidazopyrimidines (Hypoxanthine), AcylGlcADG 66:18; AcylGlcADG (22:6/22:6/22:6) and Acylcarnitine 11:0 were substantially different between HC and LC groups. Combined analysis correlated LC-associated microbes with metabolites, such as Erysipelotrichaceae_UCG_003, Clostridium and Synergistes with glycerophospholipids.ConclusionsThere is an intricate relationship between gut microbiome and levels of several metabolites such as glycerophospholipids and imidazopyrimidines. Microbial-associated metabolites are potential diagnostic biomarkers and therapeutic targets for LC.


PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204317 ◽  
Author(s):  
Ilze Elbere ◽  
Ineta Kalnina ◽  
Ivars Silamikelis ◽  
Ilze Konrade ◽  
Linda Zaharenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document