scholarly journals Specific Gut Microbiome and Serum Metabolome Changes in Lung Cancer Patients

Author(s):  
Feng Zhao ◽  
Rui An ◽  
Liqian Wang ◽  
Jikang Shan ◽  
Xianjun Wang

BackgroundLung cancer (LC) is one of the most aggressive, prevalent and fatal malignancies. Gut microbes and their associated metabolites are thought to cause and modulate LC development, albeit influenced by the host genetic make-up and environment. Herein, we identified and classified gut microbiota and serum metabolites associated with LC.MethodsStool samples were collected from 41 LC patients and 40 healthy volunteers. The gut microbiota was analyzed using 16S rRNA gene sequencing. Serum samples were collected from the same LC patients (n=30) and healthy volunteers (n=30) and serum metabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). Microbiome and metabolome data were analyzed separately and integrated for combined analysis using various bioinformatics methods.ResultsSerum metabolomics uncovered 870 metabolites regulated in 76 metabolic pathways in both groups. Microbial diversity analyses identified 15967 operational taxonomic units (OTUs) in groups. Of these, the abundance of 232 OTUs was significantly different between HC and LC groups. Also, serum levels of glycerophospholipids (LysoPE 18:3, LysoPC 14:0, LysoPC 18:3), Imidazopyrimidines (Hypoxanthine), AcylGlcADG 66:18; AcylGlcADG (22:6/22:6/22:6) and Acylcarnitine 11:0 were substantially different between HC and LC groups. Combined analysis correlated LC-associated microbes with metabolites, such as Erysipelotrichaceae_UCG_003, Clostridium and Synergistes with glycerophospholipids.ConclusionsThere is an intricate relationship between gut microbiome and levels of several metabolites such as glycerophospholipids and imidazopyrimidines. Microbial-associated metabolites are potential diagnostic biomarkers and therapeutic targets for LC.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Su ◽  
Hong-Kun Wang ◽  
Xu-Pei Gan ◽  
Li Chen ◽  
Yan-Nan Cao ◽  
...  

Abstract Background The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. Methods Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. Results Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. Conclusion Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yue Hu ◽  
Fang Chen ◽  
Haiyong Ye ◽  
Bin Lu

AbstractStress is one of the major causes of irritable bowel syndrome (IBS), which is well-known for perturbing the microbiome and exacerbating IBS-associated symptoms. However, changes in the gut microbiome and metabolome in response to colorectal distention (CRD), combined with restraint stress (RS) administration, remains unclear. In this study, CRD and RS stress were used to construct an IBS rat model. The 16S rRNA gene sequencing was used to characterize the microbiota in ileocecal contents. UHPLC-QTOF-MS/MS assay was used to characterize the metabolome of gut microbiota. As a result, significant gut microbial dysbiosis was observed in stress-induced IBS rats, with the obvious enrichment of three and depletion of 11 bacterial taxa in IBS rats, when compared with those in the control group (q < 0.05). Meanwhile, distinct changes in the fecal metabolic phenotype of stress-induced IBS rats were also found, including five increased and 19 decreased metabolites. Furthermore, phenylalanine, tyrosine and tryptophan biosynthesis were the main metabolic pathways induced by IBS stress. Moreover, the altered gut microbiota had a strong correlation with the changes in metabolism of stress-induced IBS rats. Prevotella bacteria are correlated with the metabolism of 1-Naphthol and Arg.Thr. In conclusion, the gut microbiome, metabolome and their interaction were altered. This may be critical for the development of stress-induced IBS.


Author(s):  
AA Masyutina ◽  
LN Gumenyuk ◽  
YuV Fatovenko ◽  
LE Sorokina ◽  
SS Bayramova ◽  
...  

The relationship between the gut microbiota and chronic insomnia remains understudied. The aim of this paper was to investigate changes in the taxonomic composition of the gut microbiota and their associations with the levels of cortisol, melatonin and IL6 in patients with chronic insomnia. Our comparative prospective cross-sectional study enrolled 55 patients with chronic insomnia, who formed the main group (female patients: 58.2%, male patients: 41.8%; mean age 31.6 ± 7.4 years), and 50 healthy volunteers, who comprised the control group (females: 68.0%, males: 32.0%; mean age 33.2 ± 6.6 years). The taxonomic composition of the gut microbiota was profiled using 16S rRNA gene sequencing. Plasma cortisol and IL 6 and urine melatonin were measured by means of ELISA. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI). In patients with chronic insomnia, the abundance of Faecalibacterium (p = 0.048), Prevotella 9 (p < 0.001) and Lachnospira (p = 0.036) was lower, whereas the abundance of Blautia (p = 0.012) and Eubacteriumhallii (p = 0.003) was higher than in healthy volunteers. Significant correlations were established between the levels of IL6 and the abundance of Faecalibacterium (r = –0.44; p = 0.001) and Blautia (r = 0.42; p < 0.001), as well as between cortisol concentrations and the abundance of Lachnospira (r = –0.41; p = 0.048). The abundance of Faecalibacterium and Blautiaс was correlated with higher PSQI (r = –0.47, p = 0.001; r = 0.45, p < 0.001, respectively). Our study contributed to the pool of data about changes in the gut microbiota and their associations with some endocrine and inflammation markers in patients with chronic insomnia. These data can be exploited to propose new strategies for the diagnosis and personalized treatment of insomnia aimed at normalizing the patient’s gut microbiota.


2021 ◽  
Author(s):  
Michael Nakai ◽  
Rosilene V Ribeiro ◽  
Bruce R. Stevens ◽  
Paul Gill ◽  
Rikeish R. Muralitharan ◽  
...  

AbstractAimsRecent evidence supports a role for the gut microbiota in hypertension, but whether ambulatory blood pressure (BP) is associated with gut microbiota and their metabolites remains unclear. Here we characterised the function of the gut microbiota, their metabolites and receptors in untreated human hypertensive participants in metropolitan and regional areas of Australia.Methods and ResultsAmbulatory BP, faecal microbiome DNA 16S rRNA gene sequencing, plasma and faecal metabolites called short-chain fatty acid (SCFAs), and expression of their receptors were analysed in 70 untreated and otherwise healthy participants from metropolitan and regional communities. Based on machine-learning multivariate covariance analyses of de-noised amplicon sequence variant (ASV) prevalence data, we determined that there were no significant differences in gut microbiome community α- and β-diversity metrics between normotensives versus essential, white coat or masked hypertensives. However, select taxa were specific to these groups, notably Acidaminococcus spp. in essential hypertensives, and Ruminococcus spp. and Coprobacillus in normotensive subjects. Importantly, normotensive and essential hypertensive cohorts could be differentiated based on gut microbiome gene pathways and metabolites. Specifically, hypertensive participants exhibited higher plasma acetate and butyrate, but their immune cells expressed reduced levels of SCFA-activated G-protein coupled receptor 43 (GPR43).ConclusionsWhile gut microbial diversity did not change in essential hypertension, there was a significant shift in microbial gene pathways, and an increase in the circulating levels of the SCFAs acetate and butyrate. Hypertensive subjects, however, had lower levels of the SCFA-sensing receptor GPR43, putatively blunting their response to BP-lowering metabolites.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiaman Wu ◽  
Yuanyuan Zhuo ◽  
Yulei Liu ◽  
Yan Chen ◽  
Yan Ning ◽  
...  

Abstract Background Premature ovarian insufficiency (POI) is characterized by impairment of ovarian function on a continuum before the age of 40 years. POI is affected by multiple factors. Considering new insights from recent gut microbiome studies, this study aimed to investigate the relationship between gut microbial community structure and POI. Methods Subjects were recruited at the Shenzhen Maternity & Child Healthcare Hospital. Fecal microbial community profiles of healthy women (n = 18), women with POI (n = 35) were analyzed using 16S rRNA gene sequencing based on Illumina NovaSeq platform. Results Compared to the controls, the serum levels of FSH, LH, T and FSH/LH ratio significantly increased in women with POI, whereas E2 and AMH decreased significantly. Higher weighted UniFrac value was observed in POI women compared with healthy women. Phylum Firmicutes, genera Bulleidia and Faecalibacterium were more abundant in healthy women, while phylum Bacteroidetes, genera Butyricimonas, Dorea, Lachnobacterium and Sutterella enriched significantly in women with POI. Moreover, these alterations of the gut microbiome in women with POI were closely related to FSH, LH, E2, AMH level and FSH/LH ratio. Conclusions Women with POI had altered microbial profiles in their gut microbiome, which were associated with serum hormones levels. These results will shed a new light on the pathogenesis and treatment for POI.


2021 ◽  
Author(s):  
Yin-Ping Guo ◽  
Li Shao ◽  
Li Wang ◽  
Man-Yun Chen ◽  
Wei Zhang ◽  
...  

Abstract Background: Ginsenoside CK (GCK) serves as the potential anti-colorectal cancer (CRC) protopanaxadiol (PPD)-type saponin, which could be mainly bio-converted to yield PPD by gut microbiota. Meanwhile, the anti-CRC effects of GCK could be altered by gut microbiota due to its different diversity in CRC patients. We aimed to investigate the bioconversion variation of GCK mediated by gut microbiota from CRC patients by comparing with healthy subjects.Methods: Gut microbiota profiled by 16S rRNA gene sequencing was collected from healthy volunteers and CRC patients. GCK was incubated with gut microbiota in vitro. A LC-MS/MS method was validated to quantify GCK and PPD after incubation at different time points.Results: The bioconversion of GCK in healthy subjects group was much faster than CRC group, as well as the yield of PPD. Moreover, significant difference of PPD concentration between healthy subjects group and CRC group could be observed at 12 h, 48 h and 72 h check points. According to 16S rRNA sequencing, the profiles of gut microbiota derived from healthy volunteers and CRC patients significantly varied, in which 12 differentially abundant taxon were found, such as Bifidobacterium, Roseburia, Bacteroides and Collinsella. Spearman’s correlation analysis showed bacteria enriched in healthy subjects group were positively associated with biotransformation of GCK, while bacteria enriched in CRC group displayed non correlation characters. Among them, Roseburia which could secrete β-glycosidase showed the strongest positive association with the bioconversion of GCK.Conclusion: The bioconversion of GCK in healthy subjects was much faster than CRC patients mediated by gut microbiota, which might alter the anti-CRC effects of GCK.


2021 ◽  
Author(s):  
Jialiang Li ◽  
Xueyan Li ◽  
Sina Zhang ◽  
Chen Jin ◽  
Zixia Lin ◽  
...  

Abstract BACKGROUNDThe liver-microbiome axis is implicated in the pathogenesis of hepatobiliary cancer, and the role of the gut microbiota in cholangiocarcinoma (CCA) remains unclear.METHODWe conducted a case-control study on the intestinal flora of 33 CCA patients and 47 cholelithiasis individuals. We performed 16S rRNA gene sequencing to identify disease-related gut microbiota and assess the potential of the intestinal microbiome as a non-invasive biomarker for CCA.RESULTWe found that gut microbiome of CCA patients had a significantly higher alpha diversity (Shannon and Observed species indices, p = 0.006 and p = 0.02, respectively) and an overall different microbial community composition (p = 0.032). The genus Muribaculaceae_unclassified was most strongly associated with CCA (p < 0.001). We put forward a disease predictive model including twelve intestinal microbiome genera distinguished CCA patients from CF patients with an area under curve (AUC) of approximately 0.93 (95%CI, 0.85–0.987). The forecasting performance of this model was better than CA19-9. Moreover, genera Ezakiella and Garciella were only observed among intrahepatic cholangiocarcinoma patients. Further, we assessed predicted functional modules alternations CCA patients and uncovered a microbiota pattern specific to CCA.CONCLUSIONOur findings provide evidence of the intestinal microbiome as a non-invasive biomarker for CCA.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1865
Author(s):  
Kanokwan Nahok ◽  
Jutarop Phetcharaburanin ◽  
Jia V. Li ◽  
Atit Silsirivanit ◽  
Raynoo Thanan ◽  
...  

The short- and long-term consumption of monosodium glutamate (MSG) increases urinary pH but the effects on the metabolic pathways in the liver, kidney and the gut microbiota remain unknown. To address this issue, we investigated adult male Wistar rats allocated to receive drinking water with or without 1 g% MSG for 2 weeks (n = 10, each). We performed a Nuclear Magnetic Resonance (NMR) spectroscopy-based metabolomic study of the jejunum, liver, and kidneys, while faecal samples were collected for bacterial DNA extraction to investigate the gut microbiota using 16S rRNA gene sequencing. We observed significant changes in the liver of MSG-treated rats compared to controls in the levels of glucose, pyridoxine, leucine, isoleucine, valine, alanine, kynurenate, and nicotinamide. Among kidney metabolites, the level of trimethylamine (TMA) was increased, and pyridoxine was decreased after MSG-treatment. Sequencing of the 16S rRNA gene revealed that MSG-treated rats had increased Firmicutes, the gut bacteria associated with TMA metabolism, along with decreased Bifidobacterium species. Our data support the impact of MSG consumption on liver and kidney metabolism. Based on the gut microbiome changes, we speculate that TMA and its metabolites such as trimethylamine-N-oxide (TMAO) may be mediators of the effects of MSG on the kidney health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Zhang ◽  
Min Liu ◽  
Shanlin Ke ◽  
Xiaochang Huang ◽  
Shaoming Fang ◽  
...  

More and more studies have indicated that gut microbiota takes part in the biosynthesis and metabolism of sex hormones. Inversely, sex hormones influence the composition of gut microbiota. However, whether microbiota in the gut and vagina is associated with estrus return of weaning sows is largely unknown. Here, using 16S rRNA gene sequencing in 158 fecal and 50 vaginal samples, we reported the shifts in the gut and vaginal microbiota between normal return and non-return sows. In fecal samples, Lactobacillus and S24-7 were enriched in normal return sows, while Streptococcus luteciae, Lachnospiraceae, Clostridium, and Mogibacterium had higher abundance in non-return sows. In vaginal swabs, the operational taxonomic units (OTUs) annotated to Clostridiales, Ruminoccaceae, and Oscillospira were enriched in normal return sows, while those OTUs annotated to Campylobacter, Anaerococcus, Parvimonas, Finegoldia, and Dorea had higher abundances in non-return sows. Co-abundance group (CAG) analysis repeated the identification of the bacterial taxa associated with the estrus return of weaning sows. The predicted functional capacities in both gut and vaginal microbiome were changed between normal return and non-return sows. Serum metabolome profiles were determined by non-targeted metabolome analysis in seven normal return and six non-return sows. The metabolite features having higher abundance in normal return sows were enriched in the pathways Steroid hormone biosynthesis, Starch and sucrose metabolism, Galactose metabolism, and Vitamin B6 metabolism, while the metabolite features belonging to organic acids and derivatives, indoles and derivatives, sulfoxides, and lignans and neolignans had significantly higher abundance in non-return sows. Correlation analysis found that the changes in gut microbiota were associated with the shifts of serum metabolites and suggested that certain bacteria might affect estrus return of weaning sow through serum metabolites. These findings may provide new insights for understanding the role of the gut and vaginal microbiota in sow return to estrus after weaning.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 977
Author(s):  
Tongjie Liu ◽  
Yang Li ◽  
Minjie Zhao ◽  
Qiufen Mo ◽  
Fengqin Feng

Lactobacillus plantarum ZJUFT17 (T17) is a potential probiotic bacterium isolated from Chinese traditional sourdough. The purpose of this study was to investigate its weight-reducing effects in mice fed a high-fat diet (HFD) and further to elucidate possible mechanisms. Male C57BL/6J mice fed HFD were given T17 (2–4 × 108 cfu) intragastrically for 10 weeks. The results showed that the administration of T17 significantly suppressed HFD-induced body weight gain, alleviated HFD-induced increase in serum lipids and decreased energy intake. The serum levels of obesity-related metabolic signaling molecules, including insulin, adiponectin, lipopolysaccharide (LPS) and the cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α, were markedly improved. The 16S rRNA gene sequencing revealed that T17 administration dramatically modulated the gut microbiota, suppressing pathogenic and pro-inflammatory microbes and stimulating the microbes favoring anti-obesity. The weight-reducing efficacy of T17 may be explained by its ability to ameliorate systemic inflammation and insulin resistance mediated by gut microbiota. This study revealed that T17 could ameliorate obesity and the concomitant metabolic syndrome in mice and that the lactic acid bacteria in the sourdough ecosystem may also possess anti-obesity/weight-reducing properties.


Sign in / Sign up

Export Citation Format

Share Document