scholarly journals Zero-Dimensional Plate-shaped Copper Halide Crystals with Green-yellow Emission

2021 ◽  
Author(s):  
Feng Liu ◽  
Debayan Mondal ◽  
Kai Zhang ◽  
Ying Zhang ◽  
Keke Huang ◽  
...  

Low-cost and eco-friendly metal hybrid materials with zero dimensional (0D) structure have recently attracted increasing attention owing to their excellent optical properties and widely applications. However, successful examples of 0D...

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 821
Author(s):  
Aneeqa Bashir ◽  
Mehwish Farooq ◽  
Abdul Malik ◽  
Shahzad Naseem ◽  
Arshad Saleem Bhatti

An environmentally friendlier solution processing has been introduced to fabricate zirconium oxide (ZrO2) films on quartz substrates, using spin coating of simple water-based solution. The films cured with UV-A = 330 nm for different times (40, 80, 120 min) were investigated for structural and optical properties and compared with thermally annealed film (at 350 °C). XRD and Raman spectroscopy showed amorphous structure in all the samples with no significant phase transformation with UV-A exposure. AFM microscopy showed smooth and crack free films with surface roughness ≤2 nm that reduced with UV-A exposure. Ultraviolet-visible (UV–Vis) spectroscopy demonstrated optical transmittance ≥88% and energy band gap variations as 4.52–4.70 eV. Optical constants were found from spectroscopic ellipsometry (SE). The refractive index (n) values, measured at 470 nm increased from 1.73 to 2.74 as the UV-A exposure prolonged indicating densification and decreasing porosity of the films. The extinction coefficient k decreased from 0.32 to 0.19 indicating reduced optical losses in the films under the UV-A exposure. The photoluminescence (PL) spectra exhibited more pronounced UV emissions which grew intense with UV-A exposure thereby improving the film quality. It is concluded that UV-A irradiation can significantly enhance the optical properties of ZrO2 films with minimal changes induced in the structure as compared to thermally treated film. Moreover, the present work indicates that water-based solution processing has the potential to produce high-quality ZrO2 films for low cost and environmental friendlier technologies. The work also highlights the use of UV-A radiations as an alternate to high temperature thermal annealing for improved quality.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1184
Author(s):  
Maria Cantarella ◽  
Giuliana Impellizzeri ◽  
Alessandro Di Mauro ◽  
Vittorio Privitera ◽  
Sabrina Carola Carroccio

The immobilization of inorganic nanomaterials on polymeric substrates has been drawing a lot of attention in recent years owing to the extraordinary properties of the as-obtained materials. The hybrid materials, indeed, combine the benefits of the plastic matter such as flexibility, low-cost, mechanical stability and high durability, with them deriving from their inorganic counterparts. In particular, if the inorganic fillers are nanostructured photocatalysts, the originated hybrid systems will be able to utilize the energy delivered by light, catalysing chemical reactions in a sustainable pathway. Most importantly, since the nanofillers can be ad-hoc anchored to the macromolecular structure, their release in the environment will be prevented, thus overcoming one of the main restrictions that impedes their applications on a large scale. In this review, several typologies of hybrid photocatalytic nanomaterials, obtained by using both organic and inorganic semiconductors and realized with different synthetic protocols, were reported and discussed. In the first part of the manuscript, nanocomposites realized by simply blending the TiO2 or ZnO nanomaterials in thermoplastic polymeric matrices are illustrated. Subsequently, the atomic layer deposition (ALD) technique is presented as an excellent method to formulate polymeric nanocomposites. Successively, some examples of polyporphyrins hybrid systems containing graphene, acting as photocatalysts under visible light irradiation, are discussed. Lastly, photocatalytic polymeric nanosponges, with extraordinary adsorption properties, are shown. All the described materials were deeply characterized and their photocatalytic abilities were evaluated by the degradation of several organic water pollutants such as dyes, phenol, pesticides, drugs, and personal care products. The antibacterial performance was also evaluated for selected systems. The relevance of the obtained results is widely overviewed, opening the route for the application of such multifunctional photocatalytic hybrid materials in wastewater remediation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 197
Author(s):  
Giorgia Giovannini ◽  
René M. Rossi ◽  
Luciano F. Boesel

The development of hybrid materials with unique optical properties has been a challenge for the creation of high-performance composites. The improved photophysical and photochemical properties observed when fluorophores interact with clay minerals, as well as the accessibility and easy handling of such natural materials, make these nanocomposites attractive for designing novel optical hybrid materials. Here, we present a method of promoting this interaction by conjugating dyes with chitosan. The fluorescent properties of conjugated dye–montmorillonite (MMT) hybrids were similar to those of free dye–MMT hybrids. Moreover, we analyzed the relationship between the changes in optical properties of the dye interacting with clay and its structure and defined the physical and chemical mechanisms that take place upon dye–MMT interactions leading to the optical changes. Conjugation to chitosan additionally ensures stable adsorption on clay nanoplatelets due to the strong electrostatic interaction between chitosan and clay. This work thus provides a method to facilitate the design of solid-state hybrid nanomaterials relevant for potential applications in bioimaging, sensing and optical purposes.


2017 ◽  
Author(s):  
P. Escudero ◽  
J. Yeste ◽  
R. Villa ◽  
M. Alvarez
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ryosuke Watanabe ◽  
Yohei Eguchi ◽  
Takuya Yamada ◽  
Yoji Saito

Antireflection coating (ARC) prepared by a wet process is beneficial for low cost fabrication of photovoltaic cells. In this study, we investigated optical properties and morphologies of spin-coated TiO2ARCs on alkaline textured single-crystalline silicon wafers. Reflectance spectra of the spin-coated ARCs on alkaline textured silicon wafers exhibit no interferences and low reflectance values in the entire visible range. We modeled the structures of the spin-coated films for ray tracing numerical calculation and compared numerically calculated reflectance spectra with the experimental results. This is the first report to clarify the novel optical properties experimentally and theoretically. Optical properties of the spin-coated ARCs without interference are due to the fractional nonuniformity of the thickness of the spin-coated ARCs that cancels out the interference of the incident light.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1873
Author(s):  
Petronela Pascariu ◽  
Niculae Olaru ◽  
Aurelian Rotaru ◽  
Anton Airinei

A new type of material based on carbon/ZnO nanostructures that possesses both adsorption and photocatalytic properties was obtained in three stages: cellulose acetate butyrate (CAB) microfiber mats prepared by the electrospinning method, ZnO nanostructures growth by dipping and hydrothermal methods, and finally thermal calcination at 600 °C in N2 for 30 min. X-ray diffraction (XRD) confirmed the structural characteristics. It was found that ZnO possesses a hexagonal wurtzite crystalline structure. The ZnO nanocrystals with star-like and nanorod shapes were evidenced by scanning electron microscopy (SEM) measurements. A significant decrease in Eg value was found for carbon/ZnO hybrid materials (2.51 eV) as compared to ZnO nanostructures (3.21 eV). The photocatalytic activity was evaluated by studying the degradation of three dyes, Methylene Blue (MB), Rhodamine B (RhB) and Congo Red (CR) under visible-light irradiation. Therefore, the maximum color removal efficiency (both adsorption and photocatalytic processes) was: 97.97% of MB (C0 = 10 mg/L), 98.34% of RhB (C0 = 5 mg/L), and 91.93% of CR (C0 = 10 mg/L). Moreover, the value of the rate constant (k) was found to be 0.29 × 10−2 min−1. The novelty of this study relies on obtaining new photocatalysts based on carbon/ZnO using cheap and accessible raw materials, and low-cost preparation techniques.


2003 ◽  
Vol 135-136 ◽  
pp. 157-158 ◽  
Author(s):  
J. Del Nero ◽  
J.A.P. Silva ◽  
S.B.C. Silva ◽  
A. Galembeck

RSC Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 3453-3461 ◽  
Author(s):  
Albert Lin ◽  
Chien-Chih Yang ◽  
Parag Parashar ◽  
Chien-Yung Lin ◽  
Ding Rung Jian ◽  
...  

Electrophoretic-deposited carbon nanotubes (EPD-CNTs) possess decent optical properties and low-cost processing and thus can be used as an ideal black body with compact dimension.


Sign in / Sign up

Export Citation Format

Share Document