scholarly journals A post-functionalization toolbox for diazonium (electro)-grafted surfaces: review of the coupling methods

2021 ◽  
Author(s):  
Christelle Gautier ◽  
Isidoro López ◽  
Tony Breton

Tailored 2D-nanomaterials can be prepared from diazonium electrografted surfaces through a wide range of post-functionalization approaches.

2020 ◽  
Author(s):  
Abdulkadir Celik ◽  
Khaled N. Salama ◽  
Ahmed Eltawil

<div>The Internet of Bodies (IoB) is an imminent extension to the vast Internet of things domain, where interconnected devices (e.g., worn, implanted, embedded, swallowed, etc.) located in-on-and-around the human body form a network. Thus, the IoB can enable a myriad of services and applications for a wide range of sectors, including medicine, safety, security, wellness, entertainment, to name but a few. Especially considering the recent health and economic crisis caused by novel coronavirus pandemic, a.k.a. COVID-19, the IoB can revolutionize today's public health and safety infrastructure. Nonetheless, reaping the full benefit of IoB is still subject to addressing related risks, concerns, and challenges. Hence, this survey first outlines the IoB requirements and related communication and networking standards. Considering the lossy and heterogeneous dielectric properties of the human body, one of the major technical challenges is characterizing the behavior of the communication links in-on-and-around the human body. Therefore, this paper presents a systematic survey of channel modeling issues for various link types of human body communication (HBC) channels below 100 MHz, the narrowband (NB) channels between 400 MHz and 2.5 GHz, and ultra-wideband (UWB) channels from 3 to 10 GHz. After explaining bio-electromagnetics attributes of the human body, physical and numerical body phantoms are presented along with electromagnetic propagation tool models. Then, the first-order (i.e., path loss, shadowing, multipath fading) and the second-order (i.e., delay spread, power delay profile, average fade duration, level crossing rate, etc.) channel statistics for NB and UWB channels are covered with a special emphasis on body posture, mobility, and antenna effects. For the HBC channels, three different coupling methods are considered: capacitive, galvanic, and magnetic. Based on these coupling methods, four different channel modeling methods (i.e., analytical, numerical, circuit, and empirical) are investigated, and electrode effects are discussed. Lastly, interested readers are provided with open research challenges and potential future research directions.</div><div><br></div>


2020 ◽  
Author(s):  
Abdulkadir Celik ◽  
Khaled N. Salama ◽  
Ahmed Eltawil

<div>The Internet of Bodies (IoB) is an imminent extension to the vast Internet of things domain, where interconnected devices (e.g., worn, implanted, embedded, swallowed, etc.) located in-on-and-around the human body form a network. Thus, the IoB can enable a myriad of services and applications for a wide range of sectors, including medicine, safety, security, wellness, entertainment, to name but a few. Especially considering the recent health and economic crisis caused by novel coronavirus pandemic, a.k.a. COVID-19, the IoB can revolutionize today's public health and safety infrastructure. Nonetheless, reaping the full benefit of IoB is still subject to addressing related risks, concerns, and challenges. Hence, this survey first outlines the IoB requirements and related communication and networking standards. Considering the lossy and heterogeneous dielectric properties of the human body, one of the major technical challenges is characterizing the behavior of the communication links in-on-and-around the human body. Therefore, this paper presents a systematic survey of channel modeling issues for various link types of human body communication (HBC) channels below 100 MHz, the narrowband (NB) channels between 400 MHz and 2.5 GHz, and ultra-wideband (UWB) channels from 3 to 10 GHz. After explaining bio-electromagnetics attributes of the human body, physical and numerical body phantoms are presented along with electromagnetic propagation tool models. Then, the first-order (i.e., path loss, shadowing, multipath fading) and the second-order (i.e., delay spread, power delay profile, average fade duration, level crossing rate, etc.) channel statistics for NB and UWB channels are covered with a special emphasis on body posture, mobility, and antenna effects. For the HBC channels, three different coupling methods are considered: capacitive, galvanic, and magnetic. Based on these coupling methods, four different channel modeling methods (i.e., analytical, numerical, circuit, and empirical) are investigated, and electrode effects are discussed. Lastly, interested readers are provided with open research challenges and potential future research directions.</div><div><br></div>


Author(s):  
Meina Huang ◽  
Zhengyu Gu ◽  
Jianguo Zhang ◽  
Dan Zhang ◽  
Han Zhang ◽  
...  

Bioimaging and biosensing have garnered interest in early cancer diagnosis due to the ability of gaining in-depth insights into cellular functions and providing a wide range of diagnostic parameters. Emerging...


MRS Advances ◽  
2016 ◽  
Vol 1 (32) ◽  
pp. 2267-2272
Author(s):  
Anupama B. Kaul

ABSTRACTTwo dimensional (2D) nanomaterials such as graphene and transition-metal dichalcogenides (TMDCs) have attracted tremendous attention over recent years due to their unique properties and potential for numerous applications. Given the wide range of compositions of 2D-layered materials that have emerged in recent years, it is not surprising that they offer a rich spectrum of properties, ranging from metallic, insulating, superconducting to semiconducting. Here we report on the solution-based production of 2D layered material flakes, in particular graphene and MoS2 where the materials are chemically exfoliated in organic solvents which can then be ink jet printed using a commercially available material printer, for printed electronics applications.


2020 ◽  
Vol 49 (2) ◽  
pp. 382-432 ◽  
Author(s):  
Alexander V. Anyushin ◽  
Aleksandar Kondinski ◽  
Tatjana N. Parac-Vogt

The post-functionalizable hybrid-polyoxometalate platforms offer an opportunity to covalently link redox responsive POM cores with virtually any organic molecule or metal cation, generating a wide range of materials with tailored properties.


2020 ◽  
Author(s):  
Abdulkadir Celik ◽  
Khaled N. Salama ◽  
Ahmed Eltawil

<div>The Internet of Bodies (IoB) is an imminent extension to the vast Internet of things domain, where interconnected devices (e.g., worn, implanted, embedded, swallowed, etc.) located in-on-and-around the human body form a network. Thus, the IoB can enable a myriad of services and applications for a wide range of sectors, including medicine, safety, security, wellness, entertainment, to name but a few. Especially considering the recent health and economic crisis caused by novel coronavirus pandemic, a.k.a. COVID-19, the IoB can revolutionize today's public health and safety infrastructure. Nonetheless, reaping the full benefit of IoB is still subject to addressing related risks, concerns, and challenges. Hence, this survey first outlines the IoB requirements and related communication and networking standards. Considering the lossy and heterogeneous dielectric properties of the human body, one of the major technical challenges is characterizing the behavior of the communication links in-on-and-around the human body. Therefore, this paper presents a systematic survey of channel modeling issues for various link types of human body communication (HBC) channels below 100 MHz, the narrowband (NB) channels between 400 MHz and 2.5 GHz, and ultra-wideband (UWB) channels from 3 to 10 GHz. After explaining bio-electromagnetics attributes of the human body, physical and numerical body phantoms are presented along with electromagnetic propagation tool models. Then, the first-order (i.e., path loss, shadowing, multipath fading) and the second-order (i.e., delay spread, power delay profile, average fade duration, level crossing rate, etc.) channel statistics for NB and UWB channels are covered with a special emphasis on body posture, mobility, and antenna effects. For the HBC channels, three different coupling methods are considered: capacitive, galvanic, and magnetic. Based on these coupling methods, four different channel modeling methods (i.e., analytical, numerical, circuit, and empirical) are investigated, and electrode effects are discussed. Lastly, interested readers are provided with open research challenges and potential future research directions.</div><div><br></div>


2020 ◽  
Vol 15 (12) ◽  
pp. 1436-1441
Author(s):  
Tao Zhang ◽  
Jing Xu ◽  
Ming-Lin Li

The discovery of intrinsic piezoelectricity in two-dimensional (2D) nanomaterials (NDs) have increasingly attracted extensive interests for their potential applications in next generation piezoelectric devices. Among a wide range of 2D NDs, monolayer group IV monochalcogenides with black phosphorus like structures have been revealed to have giant piezoelectricity. In this letter, the piezoelectricity of puckered group IV monochalcogenides monolayer NDs, i.e., GeTe, SnTe, and SiTe, is first calculated by using the density functional first-principles theory. The lattice structures, band structures, and elastic properties of these puckered monolayer NDs (GeTe, SnTe, and SiTe) are evaluated based on the PBE functional. ?Berry-phase? polarization theory and density functional perturbation theory (DFPT) are respectively used for calculating the piezoelectric coefficients. It is found that all these puckered monolayer NDs (GeTe, SnTe, and SiTe) exhibit highly strong piezoelectric properties. The calculated superior piezoelectricity makes these puckered monolayer NDs promising applications in the nanoscale flexible electronic and energy transfer devices.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen ◽  
Ji Pei ◽  
Sebastian Schuster ◽  
Bo Wan

The interaction between fluid and structure occurs in a wide range of engineering problems. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. One possibility for reducing the computational effort of fluid-structure simulations is the use of one-way coupled simulations. In this paper, different problems are investigated with one-way and two-way coupled methods. After an explanation of the solution strategy for both models, a closer look at the differences between these methods will be provided, and it will be shown under what conditions a one-way coupling solution gives plausible results.


Synthesis ◽  
2019 ◽  
Vol 51 (12) ◽  
pp. 2532-2541 ◽  
Author(s):  
Christine Tran ◽  
Mansour Haddad ◽  
Virginie Ratovelomanana-Vidal

A novel synthetic method for the preparation of selenopyridine derivatives, involving a [2+2+2] cycloaddition of α,ω-diynes and selenocyanates that is catalyzed by a ruthenium complex is described. This mild and straightforward reaction allows access to a wide range of selenopyridines with high yields and excellent regioselectivities, using dichloromethane or dichloroethane as solvents, at either 50 or 80 °C. Post-functionalization of halogenated cycloadducts via cyanation using copper and SNAr reaction provides substituted selenopyridines with good yields.


Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


Sign in / Sign up

Export Citation Format

Share Document