scholarly journals Correction: Concise synthesis and biological activity evaluation of novel pyrazinyl–aryl urea derivatives against several cancer cell lines, which can especially induce T24 apoptotic and necroptotic cell death

2022 ◽  
Author(s):  
Jia-Nian Chen ◽  
Chu-Ting Chen ◽  
Yue-Zhen He ◽  
Tai-Sheng Qin ◽  
Li Cheng ◽  
...  

Correction for ‘Concise synthesis and biological activity evaluation of novel pyrazinyl–aryl urea derivatives against several cancer cell lines, which can especially induce T24 apoptotic and necroptotic cell death’ by Jia-Nian Chen et al., RSC Med. Chem., 2021, DOI: 10.1039/d1md00306b.

2021 ◽  
Author(s):  
Jia-Nian Chen ◽  
Chu-Ting Chen ◽  
Yue-Zhen He ◽  
Tai-Sheng Qin ◽  
Li Cheng ◽  
...  

Based on structural modification of regorafenib, 28 pyrazinyl-aryl urea derivatives were synthesized and their in vitro antiproliferative activities were evaluated. Six compounds (5-16, 5-17, 5-18, 5-19, 5-22, and 5-23) exhibited...


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 683
Author(s):  
Giorgia Simonetti ◽  
Carla Boga ◽  
Joseph Durante ◽  
Gabriele Micheletti ◽  
Dario Telese ◽  
...  

We synthesized five novel tryptamine derivatives characterized by the presence of an azelayl chain or of a 1,1,1-trichloroethyl group, in turn connected to another heterocyclic scaffold. The combination of tryptamin-, 1,1,1-trichloroethyl- and 2-aminopyrimidinyl- moieties produced compound 9 identified as the most active compound in hematological cancer cell lines (IC50 = 0.57–65.32 μM). Moreover, keeping constant the presence of the tryptaminic scaffold and binding it to the azelayl moiety, the compounds maintain biological activity. Compound 13 is still active against hematological cancer cell lines and shows a selective effect only on HT29 cells (IC50 = 0.006 µM) among solid tumor models. Compound 14 loses activity on all leukemic lines, while showing a high level of toxicity on all solid tumor lines tested (IC50 0.0015–0.469 µM).


2016 ◽  
Vol 61 ◽  
pp. S57
Author(s):  
M. Verwey ◽  
A.M. Joubert ◽  
W. Dohle ◽  
B.V.L. Potter ◽  
A.E. Theron

2017 ◽  
Vol 24 (1) ◽  
pp. 17-30 ◽  
Author(s):  
K M Biernacka ◽  
R A Persad ◽  
A Bahl ◽  
D Gillatt ◽  
J M P Holly ◽  
...  

The incidence of many common cancers varies between different populations and appears to be affected by a Western lifestyle. Highly proliferative malignant cells require sufficient levels of nutrients for their anabolic activity. Therefore, targeting genes and pathways involved in metabolic pathways could yield future therapeutics. A common pathway implicated in energetic and nutritional requirements of a cell is the LKB1/AMPK pathway. Metformin is a widely studied anti-diabetic drug, which improves glycaemia in patients with type 2 diabetes by targeting this pathway. We investigated the effect of metformin on prostate cancer cell lines and evaluated its mechanism of action using DU145, LNCaP, PC3 and VCaP prostate cancer cell lines. Trypan blue dye-exclusion assay was used to assess levels of cell death. Western immunoblotting was used to determine the abundance of proteins. Insulin-like growth factor-binding protein-2 (IGFBP-2) and AMPK genes were silenced using siRNA. Effects on cell morphology were visualised using microscopy. IGFBP-2 gene expression was assessed using real-time RT-PCR. With DU145 and LNCaP cells metformin alone induced cell death, but this was reduced in hyperglycaemic conditions. Hyperglycaemia also reduced the sensitivity to Docetaxel, but this was countered by co-treatment with metformin. LKB1 was required for the activation of AMPK but was not essential to mediate the induction of cell death. An alternative pathway by which metformin exerted its action was through downregulation of IGFBP-2 in DU145 and LNCaP cells, independently of AMPK. This finding could have important implications in relation to therapeutic strategies in prostate cancer patients presenting with diabetes.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2108 ◽  
Author(s):  
Chuanming Zhang ◽  
Xiaoyu Tan ◽  
Jian Feng ◽  
Ning Ding ◽  
Yongpeng Li ◽  
...  

To discover new antiproliferative agents with high efficacy and selectivity, a new series of 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea derivatives (7a–7t) were designed, synthesized and evaluated for their antiproliferative activity against A549, HCT-116 and PC-3 cancer cell lines in vitro. Most of the target compounds demonstrated significant antiproliferative effects on all the selective cancer cell lines. Among them, the target compound, 1-[4-chloro-3-(trifluoromethyl)phenyl]-3-{4-{{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methyl}thio}phenyl}urea (7i) was identified to be the most active one against three cell lines, which was more potent than the positive control with an IC50 value of 1.53 ± 0.46, 1.11 ± 0.34 and 1.98 ± 1.27 μM, respectively. Further cellular mechanism studies confirmed that compound 7i could induce the apoptosis of A549 cells in a concentration-dependent manner and elucidated compound 7i arrests cell cycle at G1 phase by flow cytometry analysis. Herein, the studies suggested that the 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea skeleton might be regarded as new chemotypes for designing effective antiproliferative agents.


MedChemComm ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 800-805 ◽  
Author(s):  
Jeffrey L. Henry ◽  
Matthew R. Wilson ◽  
Michael P. Mulligan ◽  
Taylor R. Quinn ◽  
Dan L. Sackett ◽  
...  

Zampanolide and dactylolide are microtubule-stabilizing polyketides possessing potent cytotoxicity towards a variety of cancer cell lines.


Sign in / Sign up

Export Citation Format

Share Document