scholarly journals Antiferromagnetic spin ordering in two-dimensional honeycomb lattice of SiP3

2021 ◽  
Vol 3 (8) ◽  
pp. 2217-2221
Author(s):  
Souren Adhikary ◽  
Sudipta Dutta ◽  
Sasmita Mohakud

Two-dimensional buckled honeycomb lattice of SiP3 shows antiferromagnetic coupling between triangular ferromagnetic domains, arising from the Fermi-instability of itinerant π-electrons.


2021 ◽  
pp. 168440
Author(s):  
Tohru Kawarabayashi ◽  
Yuya Inoue ◽  
Ryo Itagaki ◽  
Yasuhiro Hatsugai ◽  
Hideo Aoki


2008 ◽  
Vol 795 (3) ◽  
pp. 578-595
Author(s):  
T. Enss ◽  
S. Caprara ◽  
C. Castellani ◽  
C. Di Castro ◽  
M. Grilli


2021 ◽  
pp. 2150286
Author(s):  
Erhan Albayrak

The outcome of the random crystal field effects on the antiferromagnetic spin-1 Blume–Capel model and external magnetic field are examined on the Bethe Lattice in terms of exact recursion relations. It is assumed that the crystal field is either turned on or off randomly with probability [Formula: see text] and [Formula: see text], respectively. The phase diagrams are constructed from the thermal analysis of the order parameters with the coordination number [Formula: see text] which corresponds to honeycomb lattice. It is explored that the system goes both second- and first-order phase transitions, along with the reentrant behavior and a few critical points. The reentrant behavior is stronger for lower values of [Formula: see text] and disappears as [Formula: see text] gets closer to 1.0. The first-order lines are observed to be either linked to the tricritical points or decomposed. The critical end points and double critical points are also observed.



ACS Nano ◽  
2021 ◽  
Author(s):  
Heping Li ◽  
Dechun Zhou ◽  
Qingyuan He ◽  
Nan Si ◽  
Benwu Xin ◽  
...  


2018 ◽  
Vol 98 (18) ◽  
Author(s):  
Z.-X. Li ◽  
C. Wang ◽  
Yunshan Cao ◽  
Peng Yan


2018 ◽  
Vol 4 (11) ◽  
pp. eaau0059 ◽  
Author(s):  
D. Marchenko ◽  
D. V. Evtushinsky ◽  
E. Golias ◽  
A. Varykhalov ◽  
Th. Seyller ◽  
...  

We propose a novel mechanism of flat band formation based on the relative biasing of only one sublattice against other sublattices in a honeycomb lattice bilayer. The mechanism allows modification of the band dispersion from parabolic to “Mexican hat”–like through the formation of a flattened band. The mechanism is well applicable for bilayer graphene—both doped and undoped. By angle-resolved photoemission from bilayer graphene on SiC, we demonstrate the possibility of realizing this extremely flattened band (< 2-meV dispersion), which extends two-dimensionally in a k-space area around the K¯ point and results in a disk-like constant energy cut. We argue that our two-dimensional flat band model and the experimental results have the potential to contribute to achieving superconductivity of graphene- or graphite-based systems at elevated temperatures.



2014 ◽  
Vol 4 (1) ◽  
Author(s):  
S. Y. Zhou ◽  
M. C. Langner ◽  
Y. Zhu ◽  
Y.-D. Chuang ◽  
M. Rini ◽  
...  


2021 ◽  
Author(s):  
Marlene Lúcio ◽  
Eduarda Fernandes ◽  
Hugo Gonçalves ◽  
Sofia Machado ◽  
Andreia C. Gomes ◽  
...  

Since its revolutionary discovery in 2004, graphene— a two-dimensional (2D) nanomaterial consisting of single-layer carbon atoms packed in a honeycomb lattice— was thoroughly discussed for a broad variety of applications including quantum physics, nanoelectronics, energy efficiency, and catalysis. Graphene and graphene-based nanomaterials (GBNs) have also captivated the interest of researchers for innovative biomedical applications since the first publication on the use of graphene as a nanocarrier for the delivery of anticancer drugs in 2008. Today, GBNs have evolved into hybrid combinations of graphene and other elements (e.g., drugs or other bioactive compounds, polymers, lipids, and nanoparticles). In the context of developing theranostic (therapeutic + diagnostic) tools, which combine multiple therapies with imaging strategies to track the distribution of therapeutic agents in the body, the multipurpose character of the GBNs hybrid systems has been further explored. Because each therapy and imaging strategy has inherent advantages and disadvantages, a mixture of complementary strategies is interesting as it will result in a synergistic theranostic effect. The flexibility of GBNs cannot be limited to their biomedical applications and, these nanosystems emerge as a viable choice for an indirect effect on health by their future use as environmental cleaners. Indeed, GBNs can be used in bioremediation approaches alone or combined with other techniques such as phytoremediation. In summary, without ignoring the difficulties that GBNs still present before being deemed translatable to clinical and environmental applications, the purpose of this chapter is to provide an overview of the remarkable potential of GBNs on health by presenting examples of their versatility as nanotools for theranostics and bioremediation.



Sign in / Sign up

Export Citation Format

Share Document