scholarly journals Hybrid nanostructures for electrochemical potassium storage

2021 ◽  
Author(s):  
Ajay Piriya Vijaya Kumar Saroja ◽  
Benxia Li ◽  
Yang Xu

The wide availability and low cost of potassium resources have made electrochemical potassium storage as a promising energy storage solution for sustainable decarbonisation. Research activities have been rapidly increasing in...

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2262
Author(s):  
Seon Tae Kim ◽  
Haruka Miura ◽  
Hiroki Takasu ◽  
Yukitaka Kato ◽  
Alexandr Shkatulov ◽  
...  

The MgO-CO2 working pair has been regarded as prospective for thermochemical energy storage (TCES) due to its relatively high heat storage capacity, low cost, and wide availability. This study is aimed at the optimization of the molar salt content, α, for the MgO modified with the eutectic mixture of LiNO3 and KNO3 (Li0.42K0.58NO3) which was earlier shown to provide high conversion, Δx, in heat-storage/release processes at 300–400 °C. The composites that have different salt content were prepared and carbonation kinetics was investigated under various conditions (carbonation temperature, Tcarb., is 290–360 °C and CO2 pressure, P(CO2), is 50–101 kPa). Significant accelerating effect was revealed at α ≥ 0.05, and the Δx value was maximized at α = 0.10–0.20. The largest conversion of 0.70 was detected at α = 0.10 and Tcarb. = 350 °C that corresponds to the specific useful heat (Qcomp.) is 1.63 MJ/kg-composite. However, the salt content of 0.20 ensures the high conversion, Δx = 0.63–0.67 and Qcomp. = 1.18–1.25 MJ/kg-composite in the whole temperature range between 290 and 350 °C. The (LiK)NO3/MgO composite with an optimal salt content of 0.20 exhibits reasonable durability through cyclic experiment at 330 °C, namely, the stabilized reacted conversion Δx = 0.34 (Qcomp. = 0.64 MJ/kg-composite). The studied (Li0.42K0.58)NO3 promoted MgO-CO2 working pair has good potential as thermochemical storage material of middle temperature heat (300–400 °C).


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Seong Min Ji ◽  
Anuj Kumar

Sustainable biomass has attracted a great attention in developing green renewable energy storage devices (e.g., supercapacitors) with low-cost, flexible and lightweight characteristics. Therefore, cellulose has been considered as a suitable candidate to meet the requirements of sustainable energy storage devices due to their most abundant nature, renewability, hydrophilicity, and biodegradability. Particularly, cellulose-derived nanostructures (CNS) are more promising due to their low-density, high surface area, high aspect ratio, and excellent mechanical properties. Recently, various research activities based on CNS and/or various conductive materials have been performed for supercapacitors. In addition, CNS-derived carbon nanofibers prepared by carbonization have also drawn considerable scientific interest because of their high conductivity and rational electrochemical properties. Therefore, CNS or carbonized-CNS based functional materials provide ample opportunities in structure and design engineering approaches for sustainable energy storage devices. In this review, we first provide the introduction and then discuss the fundamentals and technologies of supercapacitors and utilized materials (including cellulose). Next, the efficacy of CNS or carbonized-CNS based materials is discussed. Further, various types of CNS are described and compared. Then, the efficacy of these CNS or carbonized-CNS based materials in developing sustainable energy storage devices is highlighted. Finally, the conclusion and future perspectives are briefly conferred.


2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.


2020 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Soroush Ojagh ◽  
Sara Saeedi ◽  
Steve H. L. Liang

With the wide availability of low-cost proximity sensors, a large body of research focuses on digital person-to-person contact tracing applications that use proximity sensors. In most contact tracing applications, the impact of SARS-CoV-2 spread through touching contaminated surfaces in enclosed places is overlooked. This study is focused on tracing human contact within indoor places using the open OGC IndoorGML standard. This paper proposes a graph-based data model that considers the semantics of indoor locations, time, and users’ contexts in a hierarchical structure. The functionality of the proposed data model is evaluated for a COVID-19 contact tracing application with scalable system architecture. Indoor trajectory preprocessing is enabled by spatial topology to detect and remove semantically invalid real-world trajectory points. Results show that 91.18% percent of semantically invalid indoor trajectory data points are filtered out. Moreover, indoor trajectory data analysis is innovatively empowered by semantic user contexts (e.g., disinfecting activities) extracted from user profiles. In an enhanced contact tracing scenario, considering the disinfecting activities and sequential order of visiting common places outperformed contact tracing results by filtering out unnecessary potential contacts by 44.98 percent. However, the average execution time of person-to-place contact tracing is increased by 58.3%.


Author(s):  
peisheng guo ◽  
gongzheng yang ◽  
Chengxin Wang

Aqueous zinc-ion batteries (AZIBs) have been regarded as alternative and promising large-scale energy storage systems due to their low cost, convenient manufacturing processes, and high safety. However, their development was...


Author(s):  
Jialing Wu ◽  
Sijia Di ◽  
Wei Huang ◽  
Yuling Wu ◽  
Qiliang Huang ◽  
...  

Potassium-ion batteries have attracted considerable attentions as an emerging energy storage solution due to the abundance of potassium resources. The current development of potassium-ion batteries is, however, largely impeded by...


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1249 ◽  
Author(s):  
Bruns

Cyclodextrins (CDs) are cone-shaped molecular rings that have been widely employed in supramolecular/host–guest chemistry because of their low cost, high biocompatibility, stability, wide availability in multiple sizes, and their promiscuity for binding a range of molecular guests in water. Consequently, CD-based host–guest complexes are often employed as templates for the synthesis of mechanically bonded molecules (mechanomolecules) such as catenanes, rotaxanes, and polyrotaxanes in particular. The conical shape and cyclodirectionality of the CD “bead” gives rise to a symmetry-breaking effect when it is threaded onto a molecular “string”; even symmetrical guests are rendered asymmetric by the presence of an encircling CD host. This review focuses on the stereochemical implications of this symmetry-breaking effect in mechanomolecules, including orientational isomerism, mechanically planar chirality, and topological chirality, as well as how they support applications in regioselective and stereoselective chemical synthesis, the design of molecular machine prototypes, and the development of advanced materials.


2014 ◽  
Vol 04 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Mojtaba Rahimabady ◽  
Li Lu ◽  
Kui Yao

Multilayer dielectric capacitors were fabricated from nanocomposite precursor comprised of BaTiO 3@ TiO 2 core–shell nanosized particles and poly(vinylidene fluoride–hexafluoropropylene) (P(VDF–HFP)) polymer matrix (20 vol%). The multilayer capacitors showed very high discharge speed and high discharged energy density of around 2.5 J/cm3 at its breakdown field (~ 166 MV/m). The energy density of the nanocomposite multilayer capacitors was substantially higher than the energy density of commercially used power capacitors. Low cost, flexible structure, high discharge rate and energy density suggest that the nanocomposite multilayer capacitors are promising for energy storage applications in many power devices and systems.


2021 ◽  
pp. 161313
Author(s):  
Mahasweta Chatterjee ◽  
Samik Saha ◽  
Sachindranath Das ◽  
Satyaranjan Bhattacharyya ◽  
Swapan Kumar Pradhan

Sign in / Sign up

Export Citation Format

Share Document