Two- and four-armed hetero porphyrin dimers: Influence of the number of arms on the stability and specific recognition behaviour

Author(s):  
Masaki Ueda ◽  
Masaki Kimura ◽  
Shinobu Miyagawa ◽  
Masaya Naito ◽  
Hikaru Takaya ◽  
...  

In this study we self-assembled the four-armed porphyrin hetero dimer capsule Cap4, stabilized through amidinium–carboxylate salt bridges, in CH2Cl2 and CHCl3. The dimer capsule Cap4 was kinetically and thermodynamically more...

Biochemistry ◽  
1996 ◽  
Vol 35 (21) ◽  
pp. 6786-6794 ◽  
Author(s):  
A. C. Tissot ◽  
S. Vuilleumier ◽  
A. R. Fersht

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Tong ◽  
G. R. Berdiyorov ◽  
A. Sinopoli ◽  
M. E. Madjet ◽  
V. A. Esaulov ◽  
...  

AbstractThe stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5′-bis(mercaptomethyl)-2,2′-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.


2014 ◽  
Vol 79 (7) ◽  
pp. 2980-2992 ◽  
Author(s):  
Ken-ichi Sakaguchi ◽  
Takuya Kamimura ◽  
Hidemitsu Uno ◽  
Shigeki Mori ◽  
Shuwa Ozako ◽  
...  

2016 ◽  
Vol 20 (08n11) ◽  
pp. 1264-1271 ◽  
Author(s):  
Hanna Hakola ◽  
Essi Sariola-Leikas ◽  
Paavo Jäntti ◽  
Thomas Mokus ◽  
Kati Stranius ◽  
...  

Formation of self-assembled monolayers (SAMs) of three porphyrin and one phthalocyanine derivatives on thin ZnO film was studied by monitoring absorption spectra of the samples. The compounds were equipped with carboxylic or phosphate groups to bind to the surface. The SAM formation was found to be fast. The layer was formed in less than 15 min for all studied porphyrins, and 30 min was sufficient to form phthalocyanine layer. For porphyrins with different anchor groups the SAM formation was too fast to see any difference between the anchoring groups. The stability of SAMs was tested then by immersing the samples into neat solvents. Upon immersion the SAMs were gradually losing the absorbance for all the compounds with degradation trends being in line with p[Formula: see text] values of the binding groups of the same type. However, even for the weakest binding group the SAM was relatively stable after a few tens of minutes of washing, which was sufficient to remove physisorbed compounds but the SAM was essentially not destroyed. Comparison of SAMs on thin films with SAMs on ZnO nanorods and TiO2 nanoparticle films indicated the same fast layer formation but relatively weaker SAMs stability, showing 20–40% faster absorption losses during the washing.


ACS Nano ◽  
2020 ◽  
Vol 14 (2) ◽  
pp. 1445-1456 ◽  
Author(s):  
Christian M. Wolff ◽  
Laura Canil ◽  
Carolin Rehermann ◽  
Nguyen Ngoc Linh ◽  
Fengshuo Zu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document