Organic-inorganic nanohybrids based on AIE luminogens-functional polymer and CdTe/ZnS QDs: morphologies, optical properties, and applications

2021 ◽  
Author(s):  
Bingfeng Shi ◽  
Jianhua Lv ◽  
Ying Liu ◽  
Yang Xiao ◽  
Changli Lü

Nano-light materials have attracted a great focus on materials research due to their excellent fluorescent properties. The hybrid assembly of various nano-optical materials combines advantages of themselves, extending the boundary...

1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 197
Author(s):  
Giorgia Giovannini ◽  
René M. Rossi ◽  
Luciano F. Boesel

The development of hybrid materials with unique optical properties has been a challenge for the creation of high-performance composites. The improved photophysical and photochemical properties observed when fluorophores interact with clay minerals, as well as the accessibility and easy handling of such natural materials, make these nanocomposites attractive for designing novel optical hybrid materials. Here, we present a method of promoting this interaction by conjugating dyes with chitosan. The fluorescent properties of conjugated dye–montmorillonite (MMT) hybrids were similar to those of free dye–MMT hybrids. Moreover, we analyzed the relationship between the changes in optical properties of the dye interacting with clay and its structure and defined the physical and chemical mechanisms that take place upon dye–MMT interactions leading to the optical changes. Conjugation to chitosan additionally ensures stable adsorption on clay nanoplatelets due to the strong electrostatic interaction between chitosan and clay. This work thus provides a method to facilitate the design of solid-state hybrid nanomaterials relevant for potential applications in bioimaging, sensing and optical purposes.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (3) ◽  
pp. 51-55

The 1989 Spring Meeting of the Materials Research Society will be held at the Town and County Hotel in San Diego, with events spanning April 22-29. Meeting Chairs Robin Farrow, Dick Siegel and Angelica Stacy have developed a program of 16 technical symposia that reflect the continuing key role of materials science in the development of both mature and emerging technologies.Several new topics will reflect emerging areas, including materials for optical storage of information (Symposium F), ultrathin magnetic films (Symposium G), and materials problems of infrastructure (Symposium P). A special workshop will provide a technology update on diamond films (Symposium P) and will feature a joint session with Symposium H, Optical Materials: Processing and Science.Plenary speaker Linus Pauling, research professor at the Linus Pauling Institute of Science and Medicine, will discuss quasicrystals, materials whose atomic structure displays perfect five-fold symmetry, but whose atomic pattern is never exactly repeated as it would be in conventional crystals. During the Plenary Session MRS will also recognize graduate students who have made outstanding contributions as authors or co-authors of papers presented at the 1989 Spring Meeting.


Author(s):  
Michael E. Thomas

This chapter emphasizes the linear optical properties of solids as a function of frequency and temperature. Such information is basic to understanding the performance of optical fibers, lenses, dielectric and metallic mirrors, window materials, thin films, and solid-state photonic devices in general. Optical properties are comprehensively covered in terms of mathematical models of the complex index of refraction based on those discussed in Chapters 4 and 5. Parameters for these models are listed in Appendix 4. A general review of solid-state properties precedes this development because the choice of an optical material requires consideration of thermal, mechanical, chemical, and physical properties as well. This section introduces the classification of optical materials and surveys other material properties that must be considered as part of total optical system design involving solidstate optics. Solid-state materials can be classified in several ways. The following are relevant to optical materials. Three general classes of solids are insulators, semiconductors, and metals. Insulators and semiconductors are used in a variety of ways, such as lenses, windows materials, fibers, and thin films. Semiconductors are used in electrooptic devices and optical detectors. Metals are used as reflectors and high-pass filters in the ultraviolet. This type of classification is a function of the material’s electronic bandgap. Materials with a large room-temperature bandgap (Eg > 3eV) are insulators. Materials with bandgaps between 0 and 3 eV are semiconductors. Metals have no observable bandgap because the conduction and valence bands overlap. Optical properties change drastically from below the bandgap, where the medium is transparent, to above the bandgap, where the medium is highly reflective and opaque. Thus, knowledge of its location is important. Appendix 4 lists the bandgaps of a wide variety of optical materials. To characterize a medium within the region of transparency requires an understanding of the mechanisms of low-level absorption and scattering. These mechanisms are classified as intrinsic or extrinsic. Intrinsic properties are the fundamental properties of a perfect material, caused by lattice vibrations, electronic transitions, and so on, of the atoms composing the material.


2019 ◽  
Vol 9 (22) ◽  
pp. 4775 ◽  
Author(s):  
Osama Saber ◽  
Nagih M. Shaalan ◽  
Aya Osama ◽  
Adil Alshoaibi

The plate-like structure is the most familiar morphology for conventional layered double hydroxides (LDHs) in case their structures consist of divalent and trivalent cations in their layers. In this study, nanofibers and nanoneedles of Co–Si LDHs were prepared for the first time. By the inclusion of zirconium inside the nanolayers of LDH structures, their plates were formed and transformed to nanofibers. These nanofibers were modified by the insertion of titanium to build again plate-like morphology for the LDH structure. This morphology controlling was studied and explained by a dual anions intercalation process. The optical properties of Co–Si LDHs indicated that the incorporation of zirconium within their nanolayers decreased the band gap energy from 4.4 eV to 2.9 eV. Following the same behavior, the insertion of titanium besides zirconium within the nanolayers of Co–Si LDHs caused a further reduction in the band gap energy, which became 2.85 eV. Although there is no data for the optical properties of Co–Si LDHs in the literature, it is interesting to observe the low band gap energy for Co–Si LDHs to become more suitable for optical applications. These results concluded that the reduction of the band gap energy and the formation of nanofibers introduce new optical materials for developing and designing optical nanodevices.


Sign in / Sign up

Export Citation Format

Share Document