scholarly journals Guanidine functionalized core–shell structured magnetic cobalt-ferrite: an efficient nanocatalyst for sonochemical synthesis of spirooxindoles in water

RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15360-15368
Author(s):  
Mahla Dadaei ◽  
Hossein Naeimi

The core/shell nanoparticles have a wide range of applications in the science of chemistry and biomedical. The core-shell material can be different and modified by changing the ingredients or the ratio of core to the shell.

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 730
Author(s):  
Erik Sarnello ◽  
Tao Li

Enzyme immobilization techniques are widely researched due to their wide range of applications. Polymer–protein core–shell nanoparticles (CSNPs) have emerged as a promising technique for enzyme/protein immobilization via a self-assembly process. Based on the desired application, different sizes and distribution of the polymer–protein CSNPs may be required. This work systematically studies the assembly process of poly(4-vinyl pyridine) and bovine serum albumin CSNPs. Average particle size was controlled by varying the concentrations of each reagent. Particle size and size distributions were monitored by dynamic light scattering, ultra-small-angle X-ray scattering, small-angle X-ray scattering and transmission electron microscopy. Results showed a wide range of CSNPs could be assembled ranging from an average radius as small as 52.3 nm, to particles above 1 µm by adjusting reagent concentrations. In situ X-ray scattering techniques monitored particle assembly as a function of time showing the initial particle growth followed by a decrease in particle size as they reach equilibrium. The results outline a general strategy that can be applied to other CSNP systems to better control particle size and distribution for various applications.


Nanoscale ◽  
2019 ◽  
Vol 11 (37) ◽  
pp. 17471-17477 ◽  
Author(s):  
Jiaqi Chen ◽  
Dejing Meng ◽  
Hui Wang ◽  
Haiyun Li ◽  
Yinglu Ji ◽  
...  

Using DMAB as the Raman internal reference, the spatial trajectory of modulating 4-ATP molecules was tracked during the shell growth process.


2004 ◽  
Vol 818 ◽  
Author(s):  
U. Wiedwald ◽  
J. Lindner ◽  
M. Spasova ◽  
Z. Frait ◽  
M. Hilgendorff ◽  
...  

AbstractFerromagnetic Resonance experiments are used to investigate the magnetic properties of monodisperse Co/CoO core-shell nanoparticles with diameters of about 10nm. From frequency- dependent measurements at various frequencies of 9-80 GHz the g-value is determined to be 2.13 which suggests an fcc bulk-like environment of the Co atoms within the core of the particles. This result yields a direct measure of the ratio of orbital to spin magnetic moment νL/νS=0.065. Moreover, from temperature-dependent measurements of the resonance field the anisotropy energy is extracted and found much lower than the hcp bulk value.


NANO ◽  
2014 ◽  
Vol 09 (04) ◽  
pp. 1450042 ◽  
Author(s):  
CONG-WANG ZHANG ◽  
CHANG-CHUN ZENG ◽  
YING XU

Fe 3 O 4– SiO 2 core–shell structure nanoparticles containing magnetic properties were investigated for their potential use in drug delivery. The Fe 3 O 4– SiO 2 core–shell structure nanoparticles were successfully synthesized by a simple and convenient way. The Fe 3 O 4– SiO 2 nanoparticles showed superparamagnetic behavior, indicating a great application potential in separation technologies. From the application point of view, the prepared nanoparticles were found to act as an efficient drug carrier. Specifically, the surface of the core–shell nanoparticles was modified with amino groups by use of silane coupling agent 3-aminopropyltriethoxysilane (APTS). Doxorubicin (DOX) was successfully grafted to the surface of the core–shell nanoparticles after the decoration with the carboxyl acid groups on the surface of amino-modified core–shell structure nanoparticles. Moreover, the nanocomposite showed a good drug delivery performance in the DOX-loading efficiency and drug release experiments, confirming that the materials had a great application potential in drug delivery. It is envisioned that the prepared materials are the ideal agent for application in medical diagnosis and therapy.


2003 ◽  
Vol 774 ◽  
Author(s):  
Jiye Fang ◽  
Jibao He ◽  
Eun Young Shin ◽  
Deborah Grimm ◽  
Charles J. O'Connor ◽  
...  

Abstractγ-Fe2O3@Au core-shell nanoparticles were prepared through a combined route, in which high temperature organic solution synthesis and colloidal microemulsion techniques were successively applied. High magnification of TEM reveals the core-shell structure. The presence of Au on the surface of as-prepared particles is also confirmed by UV-Vis absorption. The magnetic core-shell nanoparticles offer a promising application in bio- and medical systems.


2007 ◽  
Vol 7 (12) ◽  
pp. 4311-4317 ◽  
Author(s):  
Koushik Dhara ◽  
Krishanu Sarkar ◽  
Partha Roy ◽  
Asim Bhaumik ◽  
Pradyot Banerjee

By one-step mixed-solvent mediated approach, we have prepared fluorescent organic core–shell nanoparticles with an oligomer (1) derived from the Schiff base condensation reaction of 2,6-diformyl-4-methylphenol and o-phenylenediamine at room temperature. The core and shell structures are generated by the same oligomer (1) featuring the aggregation structure in core different from that in shell. The radial packing factor distribution of oligomer cluster depending on the solvent interaction in the time of nucleation is mainly responsible for the single component core–shell formation. Different morphologies of the core–shell nanospheres (CSNS) and core–shell nanohemispheres (CSNHS) were generated simply by changing the concentration of 1 in chloroform-methanol mixed solvent (1:2). We observed that fluorescent emission from those core–shell nanoparticles is intense whereas as-synthesized oligomer (1) itself is non-fluorescent in dilute solution. The enhanced emission in the core–shell form with more than 50 times increase in fluorescent quantum yield vis-à-vis 1 is a remarkable feature of the study. As UV absorption spectra of nanoparticles are blue-shifted relative to their properties in solution, the observed strong emission in the solid state makes the oligomer an outstanding exception to a well-established rule based on the molecular exciton model. The core–shell nanoparticles have been characterized by FE-SEM, TEM, XRD, nanosecond (ns) time-resolved fluorescence dynamics, UV-Vis and fluorescence spectroscopy. The longer fluorescence lifetimes (τ) of core–shell nanoparticles (3.50 ns and 3.52 ns for CSNS and CSNHS respectively) than 1 as-synthesized (1.28 ns) implies that the formation of the nanoparticles restricts the rotation and vibration of the groups in the molecules. The factor that induces fluorescent enhancement of nanoparticles is mainly ascribed to the increase of radiative rate constant (kr) and simultaneous decrease of nonradiative rate constant (knr).


Sign in / Sign up

Export Citation Format

Share Document