scholarly journals Peptide-based inhibitors of protein–protein interactions: biophysical, structural and cellular consequences of introducing a constraint

2021 ◽  
Author(s):  
Hongshuang Wang ◽  
Robert S. Dawber ◽  
Peiyu Zhang ◽  
Martin Walko ◽  
Andrew J. Wilson ◽  
...  

This review summarizes the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour for peptides targeting α-helix mediated protein–protein interactions.

2002 ◽  
Vol 184 (18) ◽  
pp. 5200-5203 ◽  
Author(s):  
Eun Hee Cho ◽  
Richard I. Gumport ◽  
Jeffrey F. Gardner

ABSTRACT Bacteriophage lambda site-specific recombination comprises two overall reactions, integration into and excision from the host chromosome. Lambda integrase (Int) carries out both reactions. During excision, excisionase (Xis) helps Int to bind DNA and introduces a bend in the DNA that facilitates formation of the proper excisive nucleoprotein complex. The carboxyl-terminal α-helix of Xis is thought to interact with Int through direct protein-protein interactions. In this study, we used gel mobility shift assays to show that the amino-terminal domain of Int maintained cooperative interactions with Xis. This finding indicates that the amino-terminal arm-type DNA binding domain of Int interacts with Xis.


2020 ◽  
Author(s):  
Johanne Mbianda ◽  
May Bakail ◽  
Christophe André ◽  
Gwenaëlle Moal ◽  
Marie E. Perrin ◽  
...  

<p><b>Sequence-specific oligomers with predictable folding patterns, i.e. foldamers provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions. One major hurdle of this strategy is to retain the correct orientation of key side chains involved in protein surface recognition. Here, we show that the structural plasticity of a foldamer backbone may significantly contribute to the required spatial adjustment for optimal interaction with the protein surface. By using oligoureas as α-helix mimics, we designed a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics. The crystal structure of its complex with ASF1 reveals a striking plasticity of the urea backbone, which adapts to the ASF1 surface to maintain the same binding interface. One additional benefit of generating ASF1 ligands with non-peptide oligourea segments is the resistance to proteolysis in human plasma which was highly improved compared to the cognate α-helical peptide. </b></p>


2020 ◽  
Vol 63 (17) ◽  
pp. 10087-10087
Author(s):  
Peng Sang ◽  
Yan Shi ◽  
Junhao Lu ◽  
Lihong Chen ◽  
Leixiang Yang ◽  
...  

2006 ◽  
Vol 26 (8) ◽  
pp. 2887-2900 ◽  
Author(s):  
Kit I. Tong ◽  
Yasutake Katoh ◽  
Hideki Kusunoki ◽  
Ken Itoh ◽  
Toshiyuki Tanaka ◽  
...  

ABSTRACT The expression of the phase 2 detoxification enzymes and antioxidant proteins is induced at the transcriptional level by Nrf2 and negatively regulated at the posttranslational level by Keap1 through protein-protein interactions with and subsequent proteolysis of Nrf2. We found that the Neh2 domain of Nrf2 is an intrinsically disordered but biologically active regulatory domain containing a 33-residue central α-helix followed by a mini antiparallel β-sheet. Isothermal calorimetry analysis indicated that one Neh2 molecule interacts with two molecules of Keap1 via two binding sites, the stronger binding ETGE motif and the weaker binding DLG motif. Nuclear magnetic resonance titration study showed that these two motifs of the Neh2 domain bind to an overlapping site on the bottom surface of the β-propeller structure of Keap1. In contrast, the central α-helix of the Neh2 domain does not have any observable affinity to Keap1, suggesting that this region may serve as a bridge connecting the two motifs for the association with the two β-propeller structures of a dimer of Keap1. Based on these observations, we propose that Keap1 recruits Nrf2 by the ETGE motif and that the DLG motif of the Neh2 domain locks its lysine-rich central α-helix in a correct position to benefit ubiquitin signaling.


2005 ◽  
Vol 391 (3) ◽  
pp. 449-464 ◽  
Author(s):  
Derek N. Lavery ◽  
Iain J. Mcewan

Steroid hormones are important endocrine signalling molecules controlling reproduction, development, metabolism, salt balance and specialized cellular responses, such as inflammation and immunity. They are lipophilic in character and act by binding to intracellular receptor proteins. These receptors function as ligand-activated transcription factors, switching on or off networks of genes in response to a specific hormone signal. The receptor proteins have a conserved domain organization, comprising a C-terminal LBD (ligand-binding domain), a hinge region, a central DBD (DNA-binding domain) and a highly variable NTD (N-terminal domain). The NTD is structurally flexible and contains surfaces for both activation and repression of gene transcription, and the strength of the transactivation response has been correlated with protein length. Recent evidence supports a structural and functional model for the NTD that involves induced folding, possibly involving α-helix structure, in response to protein–protein interactions and structure-stabilizing solutes.


2008 ◽  
Vol 36 (6) ◽  
pp. 1414-1417 ◽  
Author(s):  
Ishu Saraogi ◽  
Andrew D. Hamilton

The inhibition of protein–protein interactions using small molecules is a viable approach for the treatment of a range of pathological conditions that result from a malfunctioning of these interactions. Our strategy for the design of such agents involves the mimicry of side-chain residues on one face of the α-helix; these residues frequently play a key role in mediating protein–protein interactions. The first-generation terphenyl scaffold, with a 3,2′,2″-substitution pattern, is able to successfully mimic key helix residues and disrupt therapeutically relevant interactions, including the Bcl-XL–Bak and the p53–hDM2 (human double minute 2) interactions that are implicated in cancer. The second- and third-generation scaffolds have resulted in greater synthetic accessibility and more drug-like character in these molecules.


2013 ◽  
Vol 5 (3) ◽  
pp. 161-173 ◽  
Author(s):  
Valeria Azzarito ◽  
Kérya Long ◽  
Natasha S. Murphy ◽  
Andrew J. Wilson

Sign in / Sign up

Export Citation Format

Share Document