Layered electrode materials for non-aqueous multivalent metal batteries

Author(s):  
Ahiud Morag ◽  
Minghao Yu

Multivalent metal batteries are promising large-scale energy storage technologies. This review summarizes the recent progress in the development of layered cathode materials for non-aqueous multivalent metal batteries.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1517
Author(s):  
Vo Pham Hoang Huy ◽  
Yong Nam Ahn ◽  
Jaehyun Hur

The generation of renewable energy is a promising solution to counter the rapid increase in energy consumption. Nevertheless, the availability of renewable resources (e.g., wind, solar, and tidal) is non-continuous and temporary in nature, posing new demands for the production of next-generation large-scale energy storage devices. Because of their low cost, highly abundant raw materials, high safety, and environmental friendliness, aqueous rechargeable multivalent metal-ion batteries (AMMIBs) have recently garnered immense attention. However, several challenges hamper the development of AMMIBs, including their narrow electrochemical stability, poor ion diffusion kinetics, and electrode instability. Transition metal dichalcogenides (TMDs) have been extensively investigated for applications in energy storage devices because of their distinct chemical and physical properties. The wide interlayer distance of layered TMDs is an appealing property for ion diffusion and intercalation. This review focuses on the most recent advances in TMDs as cathode materials for aqueous rechargeable batteries based on multivalent charge carriers (Zn2+, Mg2+, and Al3+). Through this review, the key aspects of TMD materials for high-performance AMMIBs are highlighted. Furthermore, additional suggestions and strategies for the development of improved TMDs are discussed to inspire new research directions.


2021 ◽  
Author(s):  
Ulrich Sigmar Schubert ◽  
Oliver Nolte ◽  
Ivan Volodin ◽  
Christian Stolze ◽  
Martin D. Hager

Flow Batteries (FBs) currently are one of the most promising large-scale energy storage technologies for energy grids with a large share of renewable electricity generation. Among the main technological challenges...


2021 ◽  
Author(s):  
Mirai Ohara ◽  
A. Shahul Hameed ◽  
Kei Kubota ◽  
Akihiro Katogi ◽  
Kuniko Chihara ◽  
...  

K-ion batteries (KIBs) are promising for large-scale electrical energy storage owing to the abundant resources and the electrochemical specificity of potassium. Among the positive electrode materials for KIBs, vanadium-based polyanionic...


2016 ◽  
Vol 18 (46) ◽  
pp. 31361-31377 ◽  
Author(s):  
Guanhui Yang ◽  
Yu Zhang ◽  
Yanshan Huang ◽  
Muhammad Imran Shakir ◽  
Yuxi Xu

This review provided an overview of recent progress on composites of conjugated carbonyl compounds and carbon nanomaterials for energy storage.


Author(s):  
Saustin Dongmo ◽  
Fabio Maroni ◽  
Cornelius Gauckler ◽  
Mario Marinaro ◽  
Margret Wohlfahrt-Mehrens

Abstract Next generation energy storage technologies need to be more sustainable and cheaper. Among Post-Li chemistries, Mg batteries are emerging as a possible alternative with desirable features like abundance of Mg on the Earth`s crust and a doubled volumetric capacity with respect to the current Li metal. However, research and development of Mg-batteries is still in its infancy stage and still many hurdles are to be understood and solved. For instance, cathode materials showing high capacities, operating at high potentials and with sufficient fast kinetics need to be designed and developed. Polyanionic materials are a class of sustainable and environmentally friendly materials that emerged as possible Mg2+ hosts. In this work the insertion of Mg cations inside the NASICON Na3V2(PO4)3 and, for the first time, in the mixed phosphate phase Na7V4(P2O7)4(PO4), is reported, structurally and electrochemically characterized.


2016 ◽  

Rechargeable Energy Storage Technologies for Automotive Applications Abstract This paper provides an extended summary of the available relevant rechargeable energy storage electrode materials that can be used for hybrid, plugin and battery electric vehicles. The considered technologies are the existing lithium-ion batteries and the next generation technologies such as lithium sulfur, solid state, metal-air, high voltage materials, metalair and sodium based. This analysis gives a clear overview of the battery potential and characteristics in terms of energy, power, lifetime, cost and finally the technical hurdles. Inhalt Seite Vorwort 1 Alternative Energiespeicher – und Wandler S. Hävemeier, Neue Zelltechnologien und die Chance einer deutschen 3 M. Hackmann, Zellproduktion – Betrachtung von Technologie, Wirtschaft- R. Stanek lichkeit und dem Standort Deutschland N. Omar, Rechargeable Energy Storage Technologies for 7 R. Gopalakrishnan Automotive Applications – Present and Future ...


2020 ◽  
Vol 274 ◽  
pp. 115213 ◽  
Author(s):  
Eduard Bullich-Massagué ◽  
Francisco-Javier Cifuentes-García ◽  
Ignacio Glenny-Crende ◽  
Marc Cheah-Mañé ◽  
Mònica Aragüés-Peñalba ◽  
...  

2016 ◽  
Vol 9 (11) ◽  
pp. 3381-3391 ◽  
Author(s):  
M. A. Modestino ◽  
D. Fernandez Rivas ◽  
S. M. H. Hashemi ◽  
J. G. E. Gardeniers ◽  
D. Psaltis

Energy storage technologies based on microfluidic electrochemical devices show optimal conversion efficiencies, and have potential to reach large-scale applications.


Sign in / Sign up

Export Citation Format

Share Document