Simultaneous water and electricity harvesting from low-grade heat by coupling membrane distiller and electrokinetic power generator

Author(s):  
Lu Huang ◽  
An He ◽  
Mengyu Miao ◽  
Junxian Pei ◽  
Tong Liu ◽  
...  

Producing clean water and electricity from low-grade thermal energy has attracted escalating interest to alleviate fresh water and energy stress. Here, we present a novel hybrid system by coupling membrane...

Author(s):  
Hooman Daghooghi Mobarakeh ◽  
Keshawa Bandara ◽  
Liping Wang ◽  
Robert Wang ◽  
Patrick E. Phelan ◽  
...  

Abstract Sorption thermal energy storage (TES) seems to be an auspicious solution to overcome the issues of intermittent energy sources and utilization of low-grade heat. Ultrasound-assisted adsorption/desorption of water vapor on activated alumina is proposed as a means of low-grade heat utilization through TES. The effects of ultrasonic power on the storing stage (desorption of water vapor) were analyzed to optimize the desorption and overall efficiencies. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant total (heat plus ultrasound) input power of 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, ultrasonic-power-to-total power ratios of 0.2 and 0.4 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. The regeneration temperature and desorption rate were measured simultaneously to investigate the effects of ultrasonication on regeneration temperature and utilization of low-grade heat. The experimental results showed that using ultrasound facilitates the regeneration of activated alumina at both power ratios without increasing the total input power. With regard to regeneration temperature, incorporating ultrasound decreases the regeneration temperature hence justifying the utilization of low-grade heat for thermal energy purposes. In terms of overall energy recovery of the adsorption thermal storage process, a new metric is proposed to justify incorporating ultrasound and any other auxiliary energy along with low-grade heat.


2020 ◽  
Vol 8 (46) ◽  
pp. 24524-24535
Author(s):  
Haoxiang Wei ◽  
Jiaqi Tang ◽  
Hongchao Wang ◽  
Dongyan Xu

This work reports the enhanced power factor of n-type Bi2Te2.8Se0.2 alloys through an efficient one-step sintering strategy for thermal energy harvesting.


Author(s):  
Yang Chen ◽  
Ahmad Abu-Heiba ◽  
Saiid Kassaee ◽  
Chenang Liu ◽  
Guodong Liu ◽  
...  

Abstract In the U.S., building sector is responsible for around 40% of total energy consumption and contributes about 40% of carbon emissions since 2012. Within the past several years, various optimization models and control strategies have been studied to improve buildings energy efficiency and reduce operational expenses under the constraints of satisfying occupants’ comfort requirements. However, the majority of these studies consider building electricity demand and thermal load being satisfied by unidirectional electricity flow from the power grid or on-site renewable energy generation to electrical and thermal home appliances. Opportunities for leveraging low grade heat for electricity have largely been overlooked due to impracticality at small scale. In 2016, a modular pumped hydro storage technology was invented in Oak Ridge National Laboratory, named Ground Level Integrated Diverse Energy Storage (GLIDES). In GLIDES, employing high efficiency hydraulic machinery instead of gas compressor/turbine, liquid is pumped to compress gas inside high-pressure vessel creating head on ground-level. This unique design eliminates the geographical limitation associated with existing state of the art energy storage technologies. It is easy to be scaled for building level, community level and grid level applications. Using this novel hydro-pneumatic storage technology, opportunities for leveraging low-grade heat in building can be economical. In this research, the potential of utilizing low-grade thermal energy to augment electricity generation of GLIDES is investigated. Since GLIDES relies on gas expansion in the discharge process and the gas temperature drops during this non-isothermal process, available thermal energy, e.g. from thermal storage, Combined Cooling, Heat and Power system (CCHP), can be utilized by GLIDES to counter the cooling effect of the expansion process and elevate the gas temperature and pressure and boost the roundtrip efficiency. Several groups of comparison experiments have been conducted and the experimental results show that a maximum 12.9% cost saving could be achieved with unlimited heat source for GLIDES, and a moderate 3.8% cost improvement can be expected when operated coordinately with CCHP and thermal energy storage in a smart building.


2021 ◽  
Author(s):  
Hooman Daghooghi ◽  
Keshawa Bandara ◽  
Liping Wang ◽  
Robert Wang ◽  
Mark Miner ◽  
...  

2019 ◽  
Vol 140 ◽  
pp. 11003
Author(s):  
Grigoriy Tseyzer ◽  
Olga Ptashkina-Girina ◽  
Olga Guseva

We consider the possibility of improving the existing heat-suppling system in Chelyabinsk through the introduction of heat pump technology for the disposal of waste low-grade heat. Sources of information concerning the ways of utilization of waste thermal energy, the principles of work of heat pumps, classification of city sources of waste heat are analyzed. The technique directed to assess the effectiveness of applying heat pumps for each category of city sources of waste thermal energy is designed. The calculated assessment showed that the utilization of waste heat in the conditions of Chelyabinsk will reduce the annual energy of fuel consumption by 2.2 million tons of conventional fuel (24.9%). At the same time, thermal pollution will decrease by 1.5 million tons of equivalent fuel. This effect is possible with the use of heat pumps with a total heat output of 1,145 MW.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5768
Author(s):  
Zeeshan ◽  
Muhammad Uzair Mehmood ◽  
Sungbo Cho

Thermomagnetic energy harvesters are one form of technology that can be effectively used to extract energy from low grade heat sources, without causing damage to the environment. In this study, we investigated the output performance of our previously designed thermomagnetic heat engine, which was developed to extract thermal energy by exploiting the magnetocaloric effect of gadolinium. The proposed heat engine uses water as the heat transfer fluid, with heat sources at a temperature in the range 20–65 °C. Although this method turned out to be a promising solution to extract thermal energy, the amount of energy extracted through this geometry of thermomagnetic engine was limited and depends on the interaction between magnetic flux and magnetocaloric material. Therefore, in this paper we carry out an in-depth analysis of the designed thermomagnetic heat engine with an integrated approach of numerical simulation and experimental validation. The computational model improved recognition of the critical component to developing an optimized model of the thermomagnetic heat engine. Based on the simulation result, a new working model was developed that showed a significant improvement in the rpm and axial torque generation. The results indicate that the peak RPM and torque of the engine are improved by 34.3% and 32.2%, respectively.


Sign in / Sign up

Export Citation Format

Share Document