Tuning Na3Hf2Si2PO12 electrolyte surfaces by metal coating for high-rate and long cycle life all-solid sodium-ion batteries

Author(s):  
Shen Cai ◽  
Haoqing Tian ◽  
Jiahui Liu ◽  
Shan Liu ◽  
Lei Dai ◽  
...  

Solid-state sodium ion batteries have attracted widely attentions due to its high energy density, low cost and high security. However, the poor contact and high interfacial resistance between sodium and...

Author(s):  
Chenrui Zhang ◽  
Tingting Liang ◽  
Huilong Dong ◽  
Junjun Li ◽  
Junyu Shen ◽  
...  

Sodium-ion batteries (SIBs) have been considered as promising candidates for large-scale energy storage. However, viable anode materials still suffer from sluggish electrochemical reaction kinetics and huge volume expansion during cycling,...


2021 ◽  
Author(s):  
QianQian Zhao ◽  
Haoqing Tian ◽  
Shan Liu ◽  
Ling Wang ◽  
Lei Dai

Abstract Solid state sodium ion batteries have attracted great attentions due to its high safety and high energy density. However, the poor wettability between sodium and solid electrolytes (point-contact) seriously limits its application at room temperature. Here, we use a graphene-based Na-K alloy instead of pure sodium as anode to improve the wettability, which allows the batteries to be operated with ultrahigh rate capability at room temperature. The reduced interfacial resistance and accelerated charge transfer kinetics between alloy anode and NASICON electrolyte (face-contact) made the batteries stable cycle more than 220 hours with a small voltage hysteresis at a high current density of 25 mA cm-2 at room temperature, even increased the current density to 65 mA cm-2, the batteries can still operate well. These results proved that the feasibility of using liquid alloy in room-temperature solid-state sodium ion batteries. This work will pave the way for the development of high-rate, dendrite-free and long-life solid-state sodium ion batteries.


Author(s):  
kai qiu ◽  
chao zhang ◽  
mingxia yan ◽  
shouwang zhao ◽  
hongwei fan ◽  
...  

High-energy density and low cost sodium-ion batteries are being sought to meet increasing energy demand. Here, R-MnO2 is chosen as a cathode material of sodium-ion batteries owing to its low...


2020 ◽  
Vol 13 (04) ◽  
pp. 2051016 ◽  
Author(s):  
Feng Zan ◽  
Yao Yao ◽  
Serguei V. Savilov ◽  
Eugenia Suslova ◽  
Hui Xia

Sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage applications. High-performance cathode material with high-energy density and long cycle life is of great interest. Here, an F-doped Nax[Formula: see text]Fy with layered-tunnel intergrowth structure is synthesized by a facile solid-state reaction method. The microstructure and composition of prepared material was confirmed by X-ray diffraction, field emission scanning electron microscope and transmission electron microscopy. The aim of the structure design is to combine the complementary features of high capacity from P2 phase and excellent structural stability from tunnel phase, as well as to improve rate performance by F doping. When investigated as high-rate and long-life cathode materials for Na-ion batteries, the layered-tunnel intergrowth structure exhibits synergistic effect including high discharge capacity (194.0[Formula: see text]mAh[Formula: see text][Formula: see text]), good rate capability (86[Formula: see text]mAh[Formula: see text][Formula: see text] at 15 C) as well as good cycling stability (81.2% capacity retention after 100 cycles). The as-prepared layered-tunnel intergrowth Nax[Formula: see text]Fy provides new insight into the development of intergrowth electrode materials and their application in rechargeable SIBs.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1000 ◽  
Author(s):  
Rui Liu ◽  
Ziteng Liang ◽  
Yuxuan Xiang ◽  
Weimin Zhao ◽  
Haodong Liu ◽  
...  

Na3V(PO4)2 was reported recently as a novel cathode material with high theoretical energy density for Sodium-ion batteries (SIBs). However, whether V3+/V4+/V5+ multielectron reactions can be realized during the charging process is still an open question. In this work, Na3V(PO4)2 is synthesized by using a solid-state method. Its atomic composition and crystal structure are verified by X-ray diffraction (XRD) and neutron diffraction (ND) joint refinement. The electrochemical performance of Na3V(PO4)2 is evaluated in two different voltage windows, namely 2.5–3.8 and 2.5–4.3 V. 51V solid-state NMR (ssNMR) results disclose the presence of V5+ in Na2−xV(PO4)2 when charging Na3V(PO4)2 to 4.3 V, confirming Na3V(PO4)2 is a potential high energy density cathode through realization of V3+/V4+/V5+ multielectron reactions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuesheng Wang ◽  
Zimin Feng ◽  
Peixin Cui ◽  
Wen Zhu ◽  
Yue Gong ◽  
...  

AbstractEnergy storage with high energy density and low cost has been the subject of a decades-long pursuit. Sodium-ion batteries are well expected because they utilize abundant resources. However, the lack of competent cathodes with both large capacities and long cycle lives prevents the commercialization of sodium-ion batteries. Conventional cathodes with hexagonal-P2-type structures suffer from structural degradations when the sodium content falls below 33%, or when the integral anions participate in gas evolution reactions. Here, we show a “pillar-beam” structure for sodium-ion battery cathodes where a few inert potassium ions uphold the layer-structured framework, while the working sodium ions could diffuse freely. The thus-created unorthodox orthogonal-P2 K0.4[Ni0.2Mn0.8]O2 cathode delivers a capacity of 194 mAh/g at 0.1 C, a rate capacity of 84% at 1 C, and an 86% capacity retention after 500 cycles at 1 C. The addition of the potassium ions boosts simultaneously the energy density and the cycle life.


Author(s):  
Jiefei Liu ◽  
Kangshou Lin ◽  
Yu Zhou ◽  
Yu Zhou ◽  
Xianhua Hou ◽  
...  

The sodium super ionic conductor (NASICON) materials are considered as the attractive cathode in sodium-ion batteries. Although the three-electron reactions in Na3MnTi(PO4)3 have greatly enhanced the capacity of NASICON-structure materials,...


Sign in / Sign up

Export Citation Format

Share Document