Phospholipid polymer hydrogels with rapid dissociation for reversible cell immobilization

Author(s):  
Sachi Moriwaki ◽  
Yuta Yoshizaki ◽  
Tomohiro Konno

Reversible and cytocompatible cell immobilization polymer matrix with rapid dissociation rate was prepared by using with a zwitterionic phospholipid polymer bearing phenylboronic acid and poly(vinyl alcohol)(PVA). A reversible and spontaneously...

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1854 ◽  
Author(s):  
Kentaro Yoshida ◽  
Akane Yamaguchi ◽  
Hiroki Midorikawa ◽  
Toshio Kamijo ◽  
Tetsuya Ono ◽  
...  

Phenylboronic acid-bearing polyamidoamine dendrimer (PBA-PAMAM)/poly(vinyl alcohol) (PVA) multilayer films were prepared through the layer-by-layer (LbL) deposition of PBA-PAMAM solution and PVA solution. PBA-PAMAM/PVA films were constructed successfully through the formation of boronate ester bonds between the boronic acid moiety in PBA and 1,3-diol units in PVA. When the (PBA-PAMAM/PVA)5 films were immersed in rose bengal (RB) solution, RB was adsorbed onto the LbL films. The amount of RB adsorbed was higher in the LbL films immersed in acidic solution than in basic solution. The release of RB from the LbL films was also promoted in the basic solution, while it was suppressed in the acidic solution. The boronic acid ester is oxidized to phenol by hydrogen peroxide (H2O2) and the carbon-boron bond is cleaved, so that the (PBA-PAMAM/PVA)5 films can be decomposed by immersion in H2O2 solution. Therefore, when RB-adsorbed (PBA-PAMAM/PVA)5 films were immersed in H2O2 solution, the release of RB was moderately promoted when the solution was weakly acidic.


RSC Advances ◽  
2015 ◽  
Vol 5 (103) ◽  
pp. 85009-85018 ◽  
Author(s):  
Sajjad Ghobadi ◽  
Sina Sadighikia ◽  
Melih Papila ◽  
Fevzi Çakmak Cebeci ◽  
Selmiye Alkan Gürsel

Graphene-containing fibrous structures with a high level of affinity towards a polymer matrix solution have been proved to be promising for high performance macroscopic nanocomposite reinforcement purposes.


2018 ◽  
Vol 66 (4) ◽  
pp. 368-374 ◽  
Author(s):  
Chihiro Takei ◽  
Yui Ohno ◽  
Tomohiro Seki ◽  
Ryotaro Miki ◽  
Toshinobu Seki ◽  
...  

2015 ◽  
Vol 3 (39) ◽  
pp. 7796-7802 ◽  
Author(s):  
Katsuhiko Sato ◽  
Mao Takahashi ◽  
Megumi Ito ◽  
Eiichi Abe ◽  
Jun-Ichi Anzai

Phenylboronic acid-bearing poly(allylamine)/poly(vinyl alcohol) layer-by-layer films coupled with glucose oxidase decomposed in the presence of glucose under physiological conditions.


2021 ◽  
pp. 152808372199718
Author(s):  
Fatma Nur Parın ◽  
Çiğdem İnci Aydemir ◽  
Gökçe Taner ◽  
Kenan Yıldırım

In this study, hydrophilic based bioactive nanofibers were produced via an electrospinning and electrospraying simultaneous process. Poly(vinyl alcohol) (PVA), poly(vinyl alcohol)-gelatin (PVA-Gel), and poly(vinyl alcohol)-alginate (PVA-Alg) polymers were used as the matrix material and folic acid (FA) particles were dispersed simultaneously on the surface of the nanofibers. The morphology of the nanofibers (NFs) was uniform and confirmed by scanning electron microscopy. Thermal behavior, chemical structure of the composite nanofibers were investigated by thermogravimetric analysis, and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy which showed that no chemical bonding between vitamin and polymers. A fast release of FA-loaded electrospun fibers was carried out by UV-Vis in vitro study within the 8 hour-period in artificial sweat solutions (pH 5.44). The obtained PVA/FA, PVA-Gel/FA, and PVA-Alg/FA fibers released 49.6%, 69.55%, and 50.88% of the sprayed FA in 8 h, indicating the influence of polymer matrix and polymer-drug interactions, on its release from the polymer matrix. Moreover, biocompatibility of all developed novel NFs was assessed by two different cytotoxicity tests, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and neutral red uptake (NRU) assay in L929 (mouse fibroblasts) cell lines. In all cases, it is concluded that these new electrospun fibers had fast-release of the vitamin and the hybrid process is suitable for transdermal patch applications, especially for skin-care products. The results of cytocompatibility assays on L929 reveal that all prepared NFs have no or slight cell toxicity. PVA and PVA-Gel with/without FA nanofibers seems more biocompatible than PVA-Alg nanofibers.


Sign in / Sign up

Export Citation Format

Share Document