Isotope effects and the relative reactivity of hydrogen attached to carbon and nitrogen in ethyleneimine

1965 ◽  
Vol 61 ◽  
pp. 2161 ◽  
Author(s):  
Peter Gray ◽  
A. Jones
2012 ◽  
Vol 46 (21) ◽  
pp. 11844-11853 ◽  
Author(s):  
Sarah G. Pati ◽  
Kwanghee Shin ◽  
Marita Skarpeli-Liati ◽  
Jakov Bolotin ◽  
Soren N. Eustis ◽  
...  

1989 ◽  
Vol 111 (4) ◽  
pp. 1493-1494 ◽  
Author(s):  
Dominik Marx ◽  
Dirk Kleinhesselink ◽  
Max Wolfsberg

2021 ◽  
Author(s):  
Heng Liu ◽  
Manli Wu ◽  
Xiqian Guo ◽  
Huan Gao ◽  
Yinrui Xu

Abstract This study investigated the isotope effects of δ13C and δ15N and microbial response during biodegradation of hydrocarbons by biostimulation with nitrate or compost in the petroleum-contaminated soil. Compost and KNO3 amendments promoted the total petroleum hydrocarbon (TPH) removal accompanied by a significant increase of Actinobacteria and Firmicutes phyla. Soil alpha diversity decreased after 90 days of biostimulation. An inverse significant carbon isotope effect (εc = 16.6 ± 0.8‰) and strong significant nitrogen isotope effect (εN = -24.20 ± 9.54‰) were shown by the KNO3 supplementation. For compost amendment, significant carbon and nitrogen isotope effect were εc = 38.8 ± 1.1‰ and εN = -79.49 ± 16.41‰, respectively. A clear difference of the carbon and nitrogen stable isotope fractionation was evident by KNO3 or compost amendment, which indicated the mechanisms of petroleum degradation by adding compost or KNO3 are different.


2016 ◽  
Vol 82 (11) ◽  
pp. 3297-3309 ◽  
Author(s):  
Mark E. Fuller ◽  
Linnea Heraty ◽  
Charles W. Condee ◽  
Simon Vainberg ◽  
Neil C. Sturchio ◽  
...  

ABSTRACTKinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰).13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2−released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2−production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2−values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2−formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted.IMPORTANCEThis work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also provides data on the isotopic effects observed in the nitrite produced during RDX biodegradation. Both of these results could lead to better understanding of the fate of RDX in the environment and help improve monitoring and remediation technologies.


2020 ◽  
Vol 74 (8-9) ◽  
pp. 457-471 ◽  
Author(s):  
Atul Rangadurai ◽  
Eric S. Szymanski ◽  
Isaac Kimsey ◽  
Honglue Shi ◽  
Hashim M. Al-Hashimi

Abstract NMR off-resonance R1ρ relaxation dispersion measurements on base carbon and nitrogen nuclei have revealed that wobble G·T/U mismatches in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-abundance, and mutagenic Watson–Crick-like conformations. As Watson–Crick-like G·T mismatches have base pairing geometries similar to Watson–Crick base pairs, we hypothesized that they would mimic Watson–Crick base pairs with respect to the sugar-backbone conformation as well. Using off-resonance R1ρ measurements targeting the sugar C3′ and C4′ nuclei, a structure survey, and molecular dynamics simulations, we show that wobble G·T mismatches adopt sugar-backbone conformations that deviate from the canonical Watson–Crick conformation and that transitions toward tautomeric and anionic Watson–Crick-like G·T mismatches restore the canonical Watson–Crick sugar-backbone. These measurements also reveal kinetic isotope effects for tautomerization in D2O versus H2O, which provide experimental evidence in support of a transition state involving proton transfer. The results provide additional evidence in support of mutagenic Watson–Crick-like G·T mismatches, help rule out alternative inverted wobble conformations in the case of anionic G·T−, and also establish sugar carbons as new non-exchangeable probes of this exchange process.


1999 ◽  
Vol 133 (3) ◽  
pp. 243-249 ◽  
Author(s):  
NIGEL G. HALFORD

The most important harvested organs of crop plants, such as seeds, tubers and fruits, are often described as assimilate sinks. They play little or no part in the fixation of carbon through the production of sugars through photosynthesis, or in the uptake of nitrogen and sulphur, but import these assimilated resources to support metabolism and to store them in the form of starch, oils and proteins. Wild plants store resources in seeds and tubers to later support an emergent young plant. Cultivated crops are effectively storing resources to provide us with food and many have been bred to accumulate much more than would be required otherwise. For example, approximately 80% of a cultivated potato plant's dry weight is contained in its tubers, ten times the proportion in the tubers of its wild relatives (Inoue & Tanaka 1978). Cultivation and breeding has brought about a shift in the partitioning of carbon and nitrogen assimilate between the organs of the plant.


Author(s):  
R.W. Carpenter

Interest in precipitation processes in silicon appears to be centered on transition metals (for intrinsic and extrinsic gettering), and oxygen and carbon in thermally aged materials, and on oxygen, carbon, and nitrogen in ion implanted materials to form buried dielectric layers. A steadily increasing number of applications of microanalysis to these problems are appearing. but still far less than the number of imaging/diffraction investigations. Microanalysis applications appear to be paced by instrumentation development. The precipitation reaction products are small and the presence of carbon is often an important consideration. Small high current probes are important and cryogenic specimen holders are required for consistent suppression of contamination buildup on specimen areas of interest. Focussed probes useful for microanalysis should be in the range of 0.1 to 1nA, and estimates of spatial resolution to be expected for thin foil specimens can be made from the curves shown in Fig. 1.


1963 ◽  
Vol 60 ◽  
pp. 52-55
Author(s):  
István Kiss ◽  
Lajos Matus ◽  
István Opauszky

Sign in / Sign up

Export Citation Format

Share Document