scholarly journals P62/SQSTM1 is a novel leucine-rich repeat kinase 2 (LRRK2) substrate that enhances neuronal toxicity

2018 ◽  
Vol 475 (7) ◽  
pp. 1271-1293 ◽  
Author(s):  
Alexia F. Kalogeropulou ◽  
Jing Zhao ◽  
Marc F. Bolliger ◽  
Anna Memou ◽  
Shreya Narasimha ◽  
...  

Autosomal-dominant, missense mutations in the leucine-rich repeat protein kinase 2 (LRRK2) gene are the most common genetic predisposition to develop Parkinson's disease (PD). LRRK2 kinase activity is increased in several pathogenic mutations (N1437H, R1441C/G/H, Y1699C, G2019S), implicating hyperphosphorylation of a substrate in the pathogenesis of the disease. Identification of the downstream targets of LRRK2 is a crucial endeavor in the field to understand LRRK2 pathway dysfunction in the disease. We have identified the signaling adapter protein p62/SQSTM1 as a novel endogenous interacting partner and a substrate of LRRK2. Using mass spectrometry and phospho-specific antibodies, we found that LRRK2 phosphorylates p62 on Thr138 in vitro and in cells. We found that the pathogenic LRRK2 PD-associated mutations (N1437H, R1441C/G/H, Y1699C, G2019S) increase phosphorylation of p62 similar to previously reported substrate Rab proteins. Notably, we found that the pathogenic I2020T mutation and the risk factor mutation G2385R displayed decreased phosphorylation of p62. p62 phosphorylation by LRRK2 is blocked by treatment with selective LRRK2 inhibitors in cells. We also found that the amino-terminus of LRRK2 is crucial for optimal phosphorylation of Rab7L1 and p62 in cells. LRRK2 phosphorylation of Thr138 is dependent on a p62 functional ubiquitin-binding domain at its carboxy-terminus. Co-expression of p62 with LRRK2 G2019S increases the neurotoxicity of this mutation in a manner dependent on Thr138. p62 is an additional novel substrate of LRRK2 that regulates its toxic biology, reveals novel signaling nodes and can be used as a pharmacodynamic marker for LRRK2 kinase activity.

2012 ◽  
Vol 40 (5) ◽  
pp. 1058-1062 ◽  
Author(s):  
Elisa Greggio

Interest in studying the biology of LRRK2 (leucine-rich repeat kinase 2) started in 2004 when missense mutations in the LRRK2 gene were linked to an inherited form of Parkinson's disease with clinical and pathological presentation resembling the sporadic syndrome. LRRK2 is a complex molecule containing domains implicated in protein interactions, as well as kinase and GTPase activities. The observation that the common G2019S mutation increases kinase activity in vitro suggests that altered phosphorylation of LRRK2 targets may have pathological outcomes. Given that protein kinases are ideal targets for drug therapies, much effort has been directed at understanding the role of LRRK2 kinase activity on disease onset. However, no clear physiological substrates have been identified to date, indicating that much research is still needed to fully understand the signalling pathways orchestrated by LRRK2 and deregulated under pathological conditions.


2012 ◽  
Vol 40 (5) ◽  
pp. 1102-1110 ◽  
Author(s):  
Evy Lobbestael ◽  
Veerle Baekelandt ◽  
Jean-Marc Taymans

The PD (Parkinson's disease) protein LRRK2 (leucine-rich repeat kinase 2) occurs in cells as a highly phosphorylated protein, with the majority of phosphosites clustering in the region between the ankyrin repeat and leucine-rich repeat domains. The observation that several pathogenic variants of LRRK2 display strongly reduced cellular phosphorylation suggests that phosphorylation of LRRK2 is involved in the PD pathological process. Furthermore, treatment of cells with inhibitors of LRRK2 kinase activity, which are currently considered as potential disease-modifying therapeutics for PD, leads to a rapid decrease in the phosphorylation levels of LRRK2. For these reasons, understanding the cellular role and regulation of LRRK2 as a kinase and as a substrate has become the focus of intense investigation. In the present review, we discuss what is currently known about the cellular phosphorylation of LRRK2 and how this relates to its function and dysfunction.


2020 ◽  
Author(s):  
Adamantios Mamais ◽  
Natalie Landeck ◽  
Rebekah G. Langston ◽  
Luis Bonet-Ponce ◽  
Nathan Smith ◽  
...  

AbstractMutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson’s disease (PD) while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a are poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a into lysosomes in cells while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive accumulation of endocytosed transferrin into Rab8a-positive lysosomes leading to a dysregulation of iron transport. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in post-mortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.


2020 ◽  
Author(s):  
Enquan Xu ◽  
Ravindra Boddu ◽  
Hisham A. Abdelmotilib ◽  
Kaela Kelly ◽  
Arpine Sokratian ◽  
...  

AbstractMissense mutations in the LRRK2 gene that lead to LRRK2 kinase hyperactivity can cause Parkinson’s disease (PD). The link between LRRK2 and α-synuclein aggregation in PD remains enigmatic. Numerous reports suggest critical LRRK2 functions in microglial responses. Herein, we find that LRRK2-positive immune cells in the brain represent CD68-positive pro-inflammatory, monocyte-derived macrophages, distinct from microglia. Rod α-synuclein fibrils stimulate LRRK2 kinase activity in monocyte-derived macrophages, and LRRK2 mutations lead to enhanced recruitment of classical monocytes into the midbrain in response to α-synuclein. LRRK2 kinase inhibition blocks α-synuclein fibril induction of LRRK2 protein in both human and murine macrophages, with human cells demonstrating much higher LRRK2 levels and kinase activity than equivalent murine cells. Further, interferon-γ strongly induces LRRK2 kinase activity in primary human macrophages in comparison to weak effects observed in murine cells. These results highlight peripheral immune responses in LRRK2-linked paradigms that further connect two central proteins in PD.


2021 ◽  
Author(s):  
Ranjan K. Singh ◽  
Ahmed Soliman ◽  
Giambattista Guaitoli ◽  
Eliza Störmer ◽  
Felix von Zweydorf ◽  
...  

Mutations in the gene coding for Leucine-Rich Repeat Kinase 2 (LRRK2) are a leading cause of the inherited form of Parkinson′s disease (PD), while LRRK2 overactivation is also associated with the more common idiopathic form of PD. LRRK2 is a large multi-domain protein, including a GTPase as well as a Ser/Thr protein kinase domain. Common disease-causing mutations increase LRRK2 kinase activity, presenting LRRK2 as an attractive target for inhibitory drug design. Currently, drug development has mainly focused on ATP-competitive kinase inhibitors. Here, we report the identification and characterization of a variety of Nanobodies that bind to different LRRK2 domains and inhibit or activate LRRK2 activity in cells and in vitro. Importantly, diverse groups of Nanobodies were identified that inhibit LRRK2 kinase activity through a mechanism that does not involve binding to the ATP pocket or even to the kinase domain. Moreover, while certain Nanobodies completely inhibit the LRRK2 kinase activity, we also identified Nanobodies that specifically inhibit the phosphorylation of Rab protein substrates. Finally, in contrast to current type-I kinase inhibitors, the studied kinase-inhibitory Nanobodies did not induce LRRK2 microtubule association. These comprehensively characterized Nanobodies represent versatile tools to study the LRRK2 function and mechanism, and can pave the way toward novel diagnostic and therapeutic strategies for PD.


PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001480
Author(s):  
Adamantios Mamais ◽  
Jillian H. Kluss ◽  
Luis Bonet-Ponce ◽  
Natalie Landeck ◽  
Rebekah G. Langston ◽  
...  

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Daniel C. Berwick ◽  
George R. Heaton ◽  
Sonia Azeggagh ◽  
Kirsten Harvey

AbstractSince the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson’s disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places.


2012 ◽  
Vol 40 (5) ◽  
pp. 1158-1162 ◽  
Author(s):  
Jing Zhao ◽  
Spencer B. Hermanson ◽  
Coby B. Carlson ◽  
Steven M. Riddle ◽  
Kurt W. Vogel ◽  
...  

Mutations in LRRK2 (leucine-rich repeat kinase 2) have been linked to inherited forms of PD (Parkinson's disease). Substantial pre-clinical research and drug discovery efforts have focused on LRRK2 with the hope that small-molecule inhibitors of the enzyme may be valuable for the treatment or prevention of the onset of PD. The pathway to develop therapeutic or neuroprotective agents based on LRRK2 function (i.e. kinase activity) has been facilitated by the development of both biochemical and cell-based assays for LRRK2. LRRK2 is phosphorylated on Ser910, Ser935, Ser955 and Ser973 in the N-terminal domain of the enzyme, and these sites of phosphorylation are likely to be regulated by upstream enzymes in an LRRK2 kinase-activity-dependent manner. Knowledge of these phosphorylation sites and their regulation can be adapted to high-throughput-screening-amenable platforms. The present review describes the utilization of LRRK2 phosphorylation as indicators of enzyme inhibition, as well as how such assays can be used to deconvolute the pathways in which LRRK2 plays a role.


2009 ◽  
Vol 284 (52) ◽  
pp. 36346-36356 ◽  
Author(s):  
Saurabh Sen ◽  
Philip J. Webber ◽  
Andrew B. West

2020 ◽  
Vol 48 (5) ◽  
pp. 2185-2194
Author(s):  
Ahmed Soliman ◽  
Fatma Nihan Cankara ◽  
Arjan Kortholt

Parkinson's disease (PD) is the second most common neurodegenerative disease. In recent years, it has been shown that leucine-rich repeat kinase 2 (LRRK2) has a crucial function in both familial and sporadic forms of PD. LRRK2 pathogenic mutations are thought to result in an increase in LRRK2 kinase activity. Thus, inhibiting LRRK2 kinase activity has become a main therapeutic target. Many compounds capable of inhibiting LRRK2 kinase activity with high selectivity and brain availability have been described. However, the safety of long-term use of these ATP-competitive LRRK2 kinase inhibitors has been challenged by several studies. Therefore, alternative ways of targeting LRRK2 activity will have a great benefit. In this review, we discuss the recent progress in the development of allosteric inhibitors of LRRK2, mainly via interfering with GTPase activity, and propose potential new intra and interprotein interactions targets that can lead to open doors toward new therapeutics.


Sign in / Sign up

Export Citation Format

Share Document