scholarly journals The metabolism of short-chain fatty acids in the sheep. 3*. Formic, n-valeric and some branched-chain acids

1954 ◽  
Vol 57 (4) ◽  
pp. 685-692 ◽  
Author(s):  
E. F. Annison ◽  
R. J. Pennington
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Shi ◽  
Di Zhao ◽  
Fan Zhao ◽  
Chong Wang ◽  
Galia Zamaratskaia ◽  
...  

AbstractThis study was aimed to evaluate the differences in the composition of gut microbiota, tryptophan metabolites and short-chain fatty acids in feces between volunteers who frequently ate chicken and who frequently ate pork. Twenty male chicken-eaters and 20 male pork-eaters of 18 and 30 years old were recruited to collect feces samples for analyses of gut microbiota composition, short-chain fatty acids and tryptophan metabolites. Chicken-eaters had more diverse gut microbiota and higher abundance of Prevotella 9, Dialister, Faecalibacterium, Megamonas, and Prevotella 2. However, pork-eaters had higher relative abundance of Bacteroides, Faecalibacterium, Roseburia, Dialister, and Ruminococcus 2. In addition, chicken-eaters had high contents of skatole and indole in feces than pork-eaters, as well as higher contents of total short chain fatty acids, in particular for acetic acid, propionic acid, and branched chain fatty acids. The Spearman’s correlation analysis revealed that the abundance of Prevotella 2 and Prevotella 9 was positively correlated with levels of fecal skatole, indole and short-chain fatty acids. Thus, intake of chicken diet may increase the risk of skatole- and indole-induced diseases by altering gut microbiota.


1997 ◽  
Vol 77 (5) ◽  
pp. 745-756 ◽  
Author(s):  
Henry Jørgensen ◽  
Torben Larsen ◽  
Xin-Quan Zhao ◽  
BjØrn O. Eggum

The present work was undertaken to study the energy value of a mixture of acetic, propionic and butyric acids (0·682: 0·226: 0·092) infused intracaecally in growing pigs. A basal diet low in fibre (42 g NSP/kg DM) was given at below the requirement for maximum weight gain. In six 2-week periods, N and energy balance measurements in eight growing pigs were carried out with and without infusion of short-chain fatty acids (SCFA). Heat production was measured using open-circuit chambers and the concentration of SCFA in faeces was determined. Less than 1% of the infused SCFA was excreted in faeces illustrating the capacity of the hind-gut to absorb and metabolize SCFA. Infusion of SCFA did not affect the digestibility of nutrients and energy. However, N retention increased demonstrating that SCFA are an energy source for protein gain when pigs are fed at below the requirement of energy. Increased CH4production together with an increased excretion of branched-chain fatty acids in faeces suggested that there was a higher microbial activity in the hind-gut during infusion. The partial utilization of the infused energyin SCFA was 0·821. A small proportion of the infused energy in SCFA was retained in protein (0·099) and a considerable amount was retained as fat (0·722).


Metabolomics ◽  
2013 ◽  
Vol 9 (4) ◽  
pp. 818-827 ◽  
Author(s):  
Xiaojiao Zheng ◽  
Yunping Qiu ◽  
Wei Zhong ◽  
Sarah Baxter ◽  
Mingming Su ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Uttam Kumar Jana ◽  
Naveen Kango ◽  
Brett Pletschke

The gut microbiota in the human body is an important component that plays a pivotal role in the ability of the host to prevent diseases and recover from these diseases. If the human microbiome changes for any reason, it affects the overall functioning of the host. Healthy and vigorous gut microbiota require dietary fiber supplementation. Recently, oligosaccharides have been found to play a significant role in the modulation of microbiota. Several such oligosaccharides, i.e., xylooligosaccharides (XOS), mannooligosaccharides (MOS), and arabino-xylooligosaccharides (AXOS), are derived from hemicellulosic macromolecules such as xylan, mannan, and arabino-xylan, respectively. These oligosaccharides serve as substrates for the probiotic production of health-promoting substances (short-chain fatty acids, branched chain amino acids etc.), which confer a variety of health benefits, including the prevention of some dreaded diseases. Among hemicellulose-derived oligosaccharides (HDOs), XOS have been largely explored, whereas, studies on MOS and AXOS are currently underway. HDOs, upon ingestion, help reduce morbidities by lowering populations of harmful or pathogenic bacteria. The ATP-binding cassette (ABC) transporters are mainly utilized for the uptake of oligosaccharides in probiotics. Butyrate generated by the selective fermentation of oligosaccharides, along with other short-chain fatty acids, reduces gut inflammation. Overall, oligosaccharides derived from hemicelluloses show a similar potential as conventional prebiotics and can be supplemented as functional foods. This review summarizes the role of HDOs in the alleviation of autoimmune diseases (inflammatory bowel disease, Crohn's disease), diabetes, urinary tract infection, cardiovascular diseases, and antimicrobial resistance (AMR) through the modulation of the gut microbiota. The mechanism of oligosaccharide utilization and disease mitigation is also explained.


1994 ◽  
Vol 92 (4) ◽  
pp. 629-635 ◽  
Author(s):  
Mercedes Gallardo ◽  
Paloma Munoz De Rueda ◽  
Angel Jesus Matilla ◽  
Isabel Maria Sanchez-Calle

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1898-P
Author(s):  
ADELINA I.L. LANE ◽  
SAVANNA N. WENINGER ◽  
FRANK DUCA

1994 ◽  
Vol 7 (6) ◽  
Author(s):  
U. Siigur ◽  
K. E. Norin ◽  
G. Allgood ◽  
T. Schlagheck ◽  
Tore Midtvedt

Sign in / Sign up

Export Citation Format

Share Document