scholarly journals The effect of magnesium and calcium ions on adenosine triphosphatase in the nervous and vascular tissues of the brain

1956 ◽  
Vol 62 (3) ◽  
pp. 465-469 ◽  
Author(s):  
D. Naidoo ◽  
O. E. Pratt
1977 ◽  
Vol 75 (1) ◽  
pp. 135-147 ◽  
Author(s):  
A L Blitz ◽  
R E Fine ◽  
P A Toselli

Coated vesicles from the brain have been purified to near morphological homogeneity by a modification of the method of Pearse. These vesicles resemble sarcoplasmic reticulum fragments isolated from skeletal muscle. They contain proteins with 100,000- and 55,000-dalton mol wt which co-migrate on polyacrylamide gels, in the presence of sodium dodecyl sulfate, with the two major proteins of the sarcoplasmic reticulum fragment. These vesicles contain adenosine triphosphatase (ATPase) activity which is stimulated by calcium ions in the presence of Triton X-100 (Rohm & Haas Co., Philadelphia, Pa.), displaying maximal activity at 8 x 10(-7) M Ca ++. They take up calcium ions from the medium, and this uptake is stimulated by ATP and by potassium oxalate, a calcium-trapping agent. The 100,000-dalton protein of the coated vesicles displays immunological reactivity with an antiserum directed against the 100,000-dalton, calcium-stimulated ATPase of the sarcoplasmic reticulum. As with the sarcoplasmic reticulum fragment, this protein becomes radiolabeled when coated vesicles are briefly incubated with gamma-labeled [32P]ATP. The possible functions of coated vesicles as calcium-sequestering organelles are discussed.


1967 ◽  
Vol 45 (6) ◽  
pp. 853-861 ◽  
Author(s):  
W. Thompson

The hydrolysis of monophosphoinositide by soluble extracts from rat brain is described. Diglyceride and inositol monophosphate are liberated along with a small amount of free fatty acids. Hydrolysis of the lipid is optimal at pH 5.4 in acetate buffer. The reaction is stimulated by calcium ions or by high concentration of monovalent cations and, to a less extent, by long-chain cationic amphipathic compounds. Enzyme activity is lost on dialysis of the brain extract and can be restored by diffusible factor(s). Some differences in the conditions for hydrolysis of mono- and tri-phosphoinositides are noted.


1965 ◽  
Vol s3-106 (75) ◽  
pp. 247-260
Author(s):  
V. C. BARBER ◽  
C.W. T. PILCHER

The light organs of female specimens of the glow-worm Lampyris noctiluca were investigated by enzyme histochemical tests, lipid stains, and electron microscopy. Differences, both histochemical and in fine structure, were found between the cells of the photocyte and reflector layers. The photocytes contained a vesiculated reticulum, photocyte granules, amorphous granules, and numerous mitochondria. The reflecter layer did not contain the reticulum or the two types of granules and there were fewer mitochondria. Glycogen granules, and spaces possibly caused by the removal of urate during preparatory procedures, were present in this layer but absent from the photocytes. All the dehydrogenase enzymes, except for glucose-6-phosphate, 6 phosphogluconic, lactic, and β-hydroxybutyric dehydrogenases, which were absent from both layers, showed more activity in the photocyte layer, NADH2 and NADPH2 diaphorase showed no activity in the reflector layer. A transition zone between the two layers was demonstrated both histochemically and morphologically. Alkaline and acid phosphatase could not be demonstrated in the light organ. The adenosine triphosphatase demonstrable in the organ was not activated by magnesium but was activated by calcium ions. Lipid was present in both layers of the organ. The tracheolar supply to the photocytes was good but no tracheolar end organs were observed. The dehydrogenase activity of the body musculature is also reported upon.


2018 ◽  
Vol 11 (07) ◽  
pp. 1850088 ◽  
Author(s):  
Devanshi D. Dave ◽  
Brajesh Kumar Jha

Brain is the most complex structure of the human body. The processes going inside the brain and the mechanisms behind it have been unrevealed up to certain extent only. Out of the various physiological phenomena carried out by the brain, calcium signalling can be considered as one of the most important. Calcium being a second messenger plays an important role in transformation of various information. In view of above, an attempt has been made here to study calcium signalling in presence of buffers, i.e. one kind of proteins and endoplasmic reticulum (ER), which is also known as store house of the cell. Being the store house of the cell, it has very high amount of calcium, whereas buffers decrease the level of free calcium ions by binding calcium ions to it. A two-dimensional mathematical model has been developed to see the impact of these parameters on cytosolic calcium concentration. This mathematical model is solved analytically using Laplace transforms and similarity transforms. The simulations are carried out using MATLAB. It is observed that the impact of buffer and ER is significant on calcium signalling. The obtained results are interpreted with the Alzheimeric condition of the nerve cells.


Sign in / Sign up

Export Citation Format

Share Document