scholarly journals The effect of ultraviolet irradiation on soluble collagen

1965 ◽  
Vol 97 (1) ◽  
pp. 139-147 ◽  
Author(s):  
DR Cooper ◽  
RJ Davidson

1. The effect of ultraviolet irradiation on acid-soluble and neutral-salt-soluble calf-skin collagen was studied by chromatography, gel filtration, amino acid analysis and sedimentation of the sub-units, and the reaction kinetics of degradation were obtained from viscosity and optical rotation measurements. 2. It was demonstrated that, whereas the structure of neutral-salt-soluble calf-skin collagen may be represented by the formula (alpha(1))(2)alpha(2), the acid-soluble extract has the formula alpha(1).(alpha(2))(2). The acid-soluble collagen is also unusual in containing a large amount of a component that could be beta(22). 3. Ultraviolet irradiation causes the progressive degradation of the collagen molecule into smaller molecular fragments that subsequently lose their helical nature. The rate constants show that the denaturation of soluble collagens by ultraviolet irradiation is much slower, under the conditions used, than denaturation by heat or enzymes.

1967 ◽  
Vol 105 (3) ◽  
pp. 965-969 ◽  
Author(s):  
R. J. Davidson ◽  
D. R. Cooper

1. A study has been made of the effect of ultraviolet irradiation on the conformational changes taking place in cooled solutions of thermally denatured acid-soluble calf-skin collagen. 2. The increase in negative rotation and viscosity at 15° for irradiated and thermally denatured collagen solutions becomes less as the irradiation dose is increased. 3. The principal effect of ultraviolet irradiation is the fission of the primary collagen chains, eventually yielding chain lengths incapable of stabilizing a helical structure. 4. The effects of ultraviolet irradiation on acid-soluble collagen may be closely correlated with similar effects on neutral salt-soluble collagen.


1974 ◽  
Vol 137 (2) ◽  
pp. 387-398 ◽  
Author(s):  
Mary C. Burleigh ◽  
Alan J. Barrett ◽  
Gerald S. Lazarus

1. Experiments were made to determine whether the purified lysosomal proteinases, cathepsins B1 and D, degrade acid-soluble collagen in solution, reconstituted collagen fibrils, insoluble collagen or gelatin. 2. At acid pH values cathepsin B1 released 14C-labelled peptides from collagen fibrils reconstituted at neutral pH from soluble collagen. The purified enzyme required activation by cysteine and EDTA and was inhibited by 4-chloromercuribenzoate, by the chloromethyl ketones derived from tosyl-lysine and acetyltetra-alanine and by human α2-macroglobulin. 3. Cathepsin B1 degraded collagen in solution, the pH optimum being pH4.5–5.0. The initial action was cleavage of the non-helical region containing the cross-link; this was seen as a decrease in viscosity with no change in optical rotation. The enzyme also attacked the helical region of collagen by a mechanism different from that of mammalian neutral collagenase. No discrete intermediate products of a specific size were observed in segment-long-spacing crystalloids (measured as native collagen molecules aligned with N-termini together along the long axis) or as separate peaks on gel filtration chromatography. This suggests that once an α-chain was attacked it was rapidly degraded to low-molecular-weight peptides. 4. Cathepsin B1 degraded insoluble collagen with a pH optimum below 4; this value is lower than that found for the soluble substrate, and a possible explanation is given. 5. The lysosomal carboxyl proteinase, cathepsin D, had no action on collagen or gelatin at pH3.0. Neither cathepsin B1 nor D cleaved Pz-Pro-Leu-Gly-Pro-d-Arg. 6. Cathepsin B1 activity was shown to be essential for the degradation of collagen by lysosomal extracts. 7. Cathepsin B1 may provide an alternative route for collagen breakdown in physiological and pathological situations.


1972 ◽  
Vol 127 (5) ◽  
pp. 855-863 ◽  
Author(s):  
A. E. Russell ◽  
D. R. Cooper

The effects of guanidinium salts in decreasing the renaturation rate and lowering the thermal stability of acid-soluble calf-skin collagen have been compared with those of formamide and urea. With the exception of guanidinium sulphate at higher concentrations, no qualitative differences were apparent in the effects of these perturbants, which thus differed only in molar activity. Activity variation in the guanidinium salts reflected a net effect resulting from additivity of cation and anion contributions. As observed in other protein systems, lyotropic activity increased in the series formamide<urea<guanidinium ion, and in the guanidinium salts in the anion order fluoride<sulphate<chloride<bromide<nitrate<iodide. Low activities of guanidinium fluoride and sulphate were attributable to counter-effects of the anions, which acted as structural stabilizers. Changes in renaturation kinetics induced by either temperature or added perturbants appeared to conform with the Flory–Weaver model for the collagen transition. Additivity and non-specificity of the observed effects are discussed with particular reference to a common mechanism involving weak, non-saturated binding of perturbants at protein peptide groups.


1971 ◽  
Vol 125 (4) ◽  
pp. 1069-1074 ◽  
Author(s):  
D. R. Cooper ◽  
A. E. Russell ◽  
G. J. Hart

The effects of a number of related glycols and substituted glycols on the renaturation kinetics of acid-soluble calf-skin collagen have been investigated. Optical rotation recovery was monitored at a fixed temperature in the presence of perturbants and the initial rates of reaction were determined. The effects of perturbants on stability of the native protein are compared with their action in the renaturing systems. The relationship between initial recovery rates and fixed-time [α]-values is shown to be dependent upon the renaturation temperature. The influence of perturbant concentration on recovery rates is discussed in terms of present theories of the mechanism of collagen renaturation.


2018 ◽  
Vol 58 (3) ◽  
pp. 585 ◽  
Author(s):  
Gaurav Lodhi ◽  
Yon-Suk Kim ◽  
Eun-Kyung Kim ◽  
Jin-Woo Hwang ◽  
Hyung-Sik Won ◽  
...  

Acid-soluble collagen and pepsin-soluble collagen were extracted from the skin of deer, Cervus korean TEMMINCK var. mantchuricus Swinhoe. The two types of collagen were then characterised using sodium dodecyl sulfate–polyacrylamide gel electrophoresis, amino acid composition analysis, peptide hydrolysis patterns, thermal denaturation temperature, differential scanning calorimetry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance imaging. The yield of pepsin-soluble collagen (9.62%) was greater than that of acid-soluble collagen (2.24%), but both types of collagen showed similar electrophoretic patterns with each other and with calf skin collagen. The peptide hydrolysis pattern results suggested that calf skin collagen and pepsin-soluble collagen from deer skin may be similar in terms of their primary structure. The thermal denaturation temperature of acid-soluble collagen and pepsin-soluble collagen were 36.67°C and 36.44°C, respectively, and their melting temperatures were 110°C and 120°C, respectively, which suggest high thermal stability. Fourier transform infrared showed a triple helical structure and nuclear magnetic resonance confirmed the presence of ‘hydration’ water. These results provide a basis for large-scale production and further application as alternatives to other mammalian collagens.


Nature ◽  
1968 ◽  
Vol 217 (5124) ◽  
pp. 168-169 ◽  
Author(s):  
R. J. DAVIDSON ◽  
D. R. COOPER

2011 ◽  
Vol 236-238 ◽  
pp. 2926-2934 ◽  
Author(s):  
Li Li Chen ◽  
Li Zhao ◽  
Hua Liu ◽  
Run Feng Wu

Pepsin-soluble collagen (PSC) was successfully extracted from the skin of Amiurus nebulosus. The skin of Amiurus nebulosus was immersed in 0.3 mol/L acetic acid (1: 20, m: V) for 6 h at 37°C, while pepsin was added, at a level of 5000U/g dosage of defatted skin. The maximal yield of the collagen was 97.44%, which was higher than that of acid-soluble collagen (ASC) at 62.05%. Some properties of pepsin-soluble collagens from the skin of Amiurus nebulosus were characterized. Amino acid composition and SDS-PAGE suggested that the collagen might be classified as type I collagen. Moreover, FTIR investigations showed the existence of helical arrangements in PSC of Amiurus nebulosus skin of collagen. There is a possibility to use Amiurus nebulosus skin collagen as an alternative source of collagen for industrial purposes and subsequently it may maximize the economical value of the fish.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 597
Author(s):  
Junde Chen ◽  
Guangyu Wang ◽  
Yushuang Li

Marine collagen is gaining vast interest because of its high biocompatibility and lack of religious and social restrictions compared with collagen from terrestrial sources. In this study, lizardfish (Synodus macrops) scales were used to isolate acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). Both ASC and PSC were identified as type I collagen with intact triple-helix structures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and spectroscopy. The ASC and PSC had high amino acids of 237 residues/1000 residues and 236 residues/1000 residues, respectively. Thus, the maximum transition temperature (Tmax) of ASC (43.2 °C) was higher than that of PSC (42.5 °C). Interestingly, the Tmax of both ASC and PSC was higher than that of rat tail collagen (39.4 °C) and calf skin collagen (35.0 °C), the terrestrial collagen. Solubility tests showed that both ASC and PSC exhibited high solubility in the acidic pH ranges. ASC was less susceptible to the “salting out” effect compared with PSC. Both collagen types were nontoxic to HaCaT and MC3T3-E1 cells, and ASC was associated with a higher cell viability than PSC. These results indicated that ASC from lizardfish scales could be an alternative to terrestrial sources of collagen, with potential for biomedical applications.


1982 ◽  
Vol 94 (2) ◽  
pp. 489-492 ◽  
Author(s):  
C Garbi ◽  
S H Wollman

When thyroid follicles are isolated by collagenase treatment of minced thyroid lobes, the basal lamina around each follicle is removed. The basal lamina does not reform when follicles are cultured in suspension in Coon's modified Ham's F-12 medium containing, in addition, 0.5% calf serum, insulin, transferrin, and thyrotropin. We have added acid soluble collagen and/or laminin to see if they would result in the formation of a basal lamina. An extended basal lamina did not form when follicles were embedded in a gel formed from acid-soluble rat tendon collagen or from calf skin collagen when added at a concentration of 100 micrograms collagen/ml. However, laminin at a concentration of 5.1 micrograms/ml gave rise to short segments of a basal lamina within 30 min. At longer time intervals, the segments lengthened and covered the base of many cells, and were continuous across the gap between cells and across the mouth of a coated pit. Not all basal surfaces were covered, and no exposed apical surfaces with microvilli had a basal lamina. There was no obvious difference in the appearance of the basal lamina if collagen was added in addition to laminin, but collagen, in contact with the plasma membrane when added alone, was lifted off the membrane in the presence of the basal lamina. The basal lamina appeared denser if formed in the presence of 5% serum instead of 0.5%.


Sign in / Sign up

Export Citation Format

Share Document