scholarly journals The action of cyanate on human and pig kidney alkaline phosphatases

1969 ◽  
Vol 111 (5) ◽  
pp. 745-748 ◽  
Author(s):  
M. J. Carey ◽  
P. J. Butterworth

1. At concentrations of cyanate up to 0·2m there is an apparently reversible combination with alkaline phosphatase (EC 3.1.3.1), but higher concentrations inhibit alkaline phosphatase irreversibly by a process that is time-dependent. 2. The effect of 0·2m-cyanate on the enzymic reaction velocity depends on the substrate concentration. There is inhibition when the substrate concentration is 1·0mm or higher, but at lower substrate concentrations cyanate has an activating effect. 3. The pH-dependence of the reversible reaction suggests that cyanate may react with a thiol group at or near the active site of the enzyme, preventing a conformational change that is believed to be important in the mechanism of action of alkaline phosphatase. 4. Prolonged treatment with 0·6m-cyanate probably carbamoylates all free amino groups in the enzyme molecule and generates a new enzyme with decreased Vmax. and increased Km.

1976 ◽  
Vol 22 (7) ◽  
pp. 972-976 ◽  
Author(s):  
H Van Belle

Abstract I studied the kinetics and sensitivity toward inhibition by levamisole and R 8231 of the most important human alkaline phosphatase isoenzymes. N-Ethylaminoethanol proved superior to the now widely used diethanolamine buffer, especially for the enzymes from the intestine and placenta, behaving as an uncompetitive activator. The optimum pH largely depends on the substrate concentration. The addition of Mg2+ has no effect on the activities. The meaning of Km-values for alkaline phosphatases is questioned. Isoenzymes from human liver, bone, kidney, and spleen are strongly inhibited by levamisole or R 8231 at concentrations that barely affect the enzymes from intestine or placenta. The inhibition is stereospecific, uncompetitive, and not changed by Mg2+. Inhibition is counteracted by increasing concentrations of N-ethylaminoethanol. The mechanism of inhibition is suggested to be formation of a complex with the phosphoenzyme.


1974 ◽  
Vol 141 (1) ◽  
pp. 293-298 ◽  
Author(s):  
Kunio Hiwada ◽  
Ernst D. Wachsmuth

Several alkaline phosphatases (EC 3.1.3.1) could be obtained from pig kidney brush-border membrane on extraction with butan-1-ol. Three of the multiple forms were separated by DEAE-cellulose chromatography and further purified. They form a regular series with different degrees of glycosylation (mainly owing to N-acetylneuraminic acid), of charge, of molecular weight, of stability to temperature, to pH and to urea, of minimal requirement for Mg2+ and of extractability by butan-1-ol. In contrast, the detectable antigenic sites, the inhibition by amino acids and the pH-dependency of Km and Vmax. were identical for these multiple forms. On treatment with neuraminidase, the multiple forms became identical in all their properties. It was therefore concluded that the microheterogeneity of alkaline phosphatase is due to different degrees of glycosylation at polypeptide chains which appear to be otherwise identical.


1975 ◽  
Vol 53 (10) ◽  
pp. 1089-1100 ◽  
Author(s):  
Claude PetitClerc ◽  
Monique Delisle ◽  
Marc Martel ◽  
Claude Fecteau ◽  
Normand Brière

Rat placental alkaline phosphatase (EC 3.1.3.1), a dimer of 135 000 daltons, is strongly activated by Mg2+. However, Zn2+ has to be present on the apoenzyme to obtain this activation. Mg2+ alone is unable to reconstitute functional active sites. Excess Zn2+ which competes for the Mg2+ site leads to a phosphatase with little catalytic activity at alkaline pH, but with normal active sites at acidic pH as shown by covalent incorporation of ortho-[32P]phosphate.Two enzyme species with identical functional active sites have been reconstituted that only differ by the presence of Zn2+ or Mg2+ at the effector site.A mechanism is presented by which alkaline phosphatase activity of rat placenta would be controlled by a molecular process involving the interaction of Mg2+ and Zn2+ with the dimeric enzyme molecule.


2013 ◽  
Vol 27 (2) ◽  
pp. 151-158 ◽  
Author(s):  
S. Jezierska-Tys ◽  
A. Rutkowska

Abstract The effect of chemicals (Reglone 200 SL and Elastiq 550 EC) on soil microorganisms and their enzymatic activity was estimated. The study was conducted in a field experiment which was set up in the split-block design and comprised three treatments. Soil samples were taken six times, twice in each year of study. The results showed that the application of chemicals generally had no negative effect on the number of soil microorganisms. The application of Reglone 200 SL caused an increase of proteolytic and ureolytic activity and affected the activity of dehydrogenases, acid and alkaline phosphatases in the soil. The soil subjected of Elastiq 550 EC was characterized by lower activity of dehydrogenases, protease, urease and alkaline phosphatase.


Author(s):  
Jacob Bamaiyi ◽  
Omajali ◽  
Sanni Momoh

This study investigates the effects of kanwa on rat gastrointestinal phosphatases. The rats were administered 7% w/v concentration of  trona (Kanwa) orally for a period of two weeks in order to investigate how this compound is being used as food additive in some homes in Nigeria. The Kanwa used in this study was the handpicked variety obtained from sellers from Anyigba market in eastern part of Kogi State, Nigeria. Kanwa, a hydrated sodium carbonate (Na2CO3NaHCO3.2H2O) was obtained as a dried lake salt. Acid phosphatase has the ability to dephosphorylate molecules containing phosphate group. The decreased and elevated level in serum or plasma acid and alkaline phosphatases serves as diagnostic indices for various diseases. Results showed that there was increase and decrease of acid phosphatase (ACP) activities in both the stomach and small intestine. The activities of alkaline phosphatase (ALP) fluctuated in the small intestine. However, in the stomach, an increase activity of ALP was noticed throughout the period of ‘Kanwa’ administration. We concluded that although the level of ‘Kanwa’ consumed in most homes may not be toxic if not taken continuously or repeatedly. Thus, continuous consumption should be discouraged as accumulation of high level of ‘Kanwa’ may cause damages or injuries to the various organs/tissues and may disrupt normal body function.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 117-123 ◽  
Author(s):  
D. van der Kooij ◽  
W. A. M. Hijnen

A K.pneumoniae strain, isolated from a water treatment system, was tested in growth measurements for its ability to multiply at substrate concentrations of a few micrograms per liter. The organism multiplied on mixtures of carbohydrates and amino acids at a substrate concentration of 1 µg of C of each compound per liter. Tests with individual compounds revealed that especially carbohydrates were utilized at low concentrations. The Ks values obtained for maltose and maltopentaose were 53 µg of C/l and 114 µg of C per liter, respectively. The significance of the growth of K.pneumoniae at low substrate concentrations is discussed.


1979 ◽  
Vol 179 (3) ◽  
pp. 697-700 ◽  
Author(s):  
N Gains

By using a standard graphical method values of Km and V may be found that are independent of the conditions and assumptions that the total substrate concentration approximates to its free concentration and that Km is much larger than the enzyme concentration. The procedure is also applicable to the determination of equilibrium binding parameters of a ligand to a macromolecule.


1991 ◽  
Vol 275 (3) ◽  
pp. 767-773 ◽  
Author(s):  
Y K Li ◽  
J Boggaram ◽  
L D Byers

Two new alkylating reagents, chloro- and bromo-acetylphosphonate, were found to be very effective thiol-blocking reagents. The pH-dependence of the reaction of BAP with 2,4-dinitrothiophenol (25 degrees C, I 0.5) shows a tailing bell-shaped curve (with a plateau at high pH) characteristic of two ionizing groups: the thiol group (pKa 3.2) and the phosphonate group (pKa2 4.6). The rate constant for the reaction of the monoanionic inhibitor with dinitrothiophenolate (k2 = 7 M-1.s-1) is 120 times larger than that of the dianionic species. The haloacetylphosphonates were found to be irreversible inhibitors of glyceraldehyde-3-phosphate dehydrogenase from a variety of sources. They react with the active-site thiol group (Cys-149) and are half-site reagents with yeast glyceraldehyde-3-phosphate dehydrogenase. Thus, when two of the identical four subunits are modified the enzyme is catalytically inactive. The effects of pH (7-10), 2H2O and NAD+ on the reaction with the yeast enzyme were examined in detail. NAD+ enhances the alkylation rates. The second-order rate constant does not show a simple sigmoidal dependence on pH but rather a tailing bell-shaped curve (pKa 7.0 and 8.4) qualitatively similar to that obtained with dinitrothiophenol. There is no significant solvent isotope effect on the limiting rate constants and a normal isotope effect on the two pKa values. The results are consistent with the more reactive enzyme species containing a thiolate and an acidic group that may either donate a proton to the dianionic haloacetylphosphonate or orient the inhibitor.


Author(s):  
Gerald A Maguire ◽  
Halima Adnan

The serum of patients with obstructive liver disease may contain a high molecular weight form of alkaline phosphatase (high Mr alkaline phosphatase). The presence of this form of alkaline phosphatase is associated with hepatic malignancies. We have investigated the use of anti-alkaline phosphatase monoclonal antibodies which do not bind high Mr alkaline phosphatase in assays for high Mr alkaline phosphatase. Direct immunoprecipitation of liver and bone alkaline phosphatase with solid phase anti-liver alkaline phosphatase antibody (which also reacts with bone alkaline phosphatase) and measurement of the residual supernatant alkaline phosphatase activity led to a precise assay. Intestinal alkaline phosphatase interfered in this assay which, consequently, was of little use in the differential diagnosis of liver disease. Indirect precipitation of liver, bone, placental and intestinal alkaline phosphatase by soluble anti-liver alkaline phosphatase (which reacts with liver and bone alkaline phosphatases), soluble anti-intestinal alkaline phosphatase (which reacts with placental and intestinal alkaline phosphatases) and solid phase anti-mouse IgG led to an assay which, although less precise, showed more promise of being useful clinically.


1979 ◽  
Vol 181 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M N Woodroofe ◽  
P J Butterworth

The arginine-specific reagents 2,3-butanedione and phenylglyoxal inactivate pig kidney alkaline phosphatase. As inactivation proceeds there is a progressive fall in Vmax. of the enzyme, but no demonstrable change in the Km value for substrate. Pi, a competitive inhibitor, and AMP, a substrate of the enzyme, protect alkaline phosphatase against the arginine-specific reagents. These effects are explicable by the assumption that the enzyme contains an essential arginine residue at the active site. Protection is also afforded by the uncompetitive inhibitor NADH through a partially competive action against the reagents. Enzyme that has been exposed to the reagents has a decreased sensitivity to NADH inhibition. It is suggested that an arginine residue is important for NADH binding also, although this residue is distinct from that at the catalytic site. The protection given by NADH against loss of activity is indicative of the close proximity of the active and NADH sites.


Sign in / Sign up

Export Citation Format

Share Document