scholarly journals The glycosaminoglycans of human tracheobronchial cartilage

1970 ◽  
Vol 120 (4) ◽  
pp. 777-785 ◽  
Author(s):  
R. M. Mason ◽  
F. S. Wusteman

1. The glycosaminoglycans of human tracheobronchial cartilages from subjects of various ages were liberated by proteolysis of the tissue and purified by ion-exchange chromatography. Purified glycosaminoglycans were fractionated on Dowex 1 resin and cetylpyridinium chloride was used to separate chondroitin sulphates and keratan sulphates occurring in the same fraction. 2. The total chondroitin sulphate content of the cartilages decreased linearly with increasing age. Age-dependent changes in the chemical heterogeneity of chondroitin sulphate were observed, a low-sulphated compound making up 25% of the total glycosaminoglycan at birth but rapidly diminishing in content during the first 6 months of life. Of the total chondroitin sulphate the 6-isomer became rather more prominent than the 4-isomer with increasing age. 3. The total keratan sulphate content of the cartilages increased from trace amounts only at birth to a plateau value by the beginning of the fifth decade. Of the total keratan sulphate approx. 70% was due to a high-molecular-weight compound with a sulphate/hexosamine ratio of 1.5–1.8: 1.0. The degree of sulphation varied between compounds isolated from different individuals. The remaining 30% of the keratan sulphate appeared to be intimately associated with chondroitin 6-sulphate and could only be separated from it after treatment with 0.45m-potassium hydroxide. The hybrid glycosaminoglycans were of lower molecular weight and had a lower sulphate/hexosamine ratio than the major keratan sulphate compound.

1974 ◽  
Vol 139 (3) ◽  
pp. 565-581 ◽  
Author(s):  
Timothy E. Hardingham ◽  
Helen Muir

1. Dissociation of purified proteoglycan aggregates was shown to release an interacting component of buoyant density higher than that of the glycoprotein-link fraction of Hascall & Sajdera (1969). 2. This component, which produced an increase in hydrodynamic size of proteoglycans on gel chromatography, was isolated by ECTEOLA-cellulose ion-exchange chromatography and identified as hyaluronic acid. 3. The effect of pH of extraction showed that the proportion of proteoglycan aggregates isolated from cartilage was greatest at pH4.5. 4. The proportion of proteoglycans able to interact with hyaluronic acid decreased when extracted above or below pH4.5, whereas the amount of hyaluronic acid extracted appeared constant from pH3.0 to 8.5. 5. Sequential extraction of cartilage with 0.15m-NaCl at neutral pH followed by 4m-guanidinium chloride at pH4.5 was shown to yield predominantly non-aggregated and aggregated proteoglycans respectively. 6. Most of the hyaluronic acid in cartilage, representing about 0.7% of the total uronic acid, was associated with proteoglycan aggregates. 7. The non-aggregated proteoglycans were unable to interact with hyaluronic acid and were of smaller size, lower protein content and lower keratan sulphate content than the disaggregated proteoglycans. Together with differences in amino acid composition this suggested that each type of proteoglycan contained different protein cores.


1969 ◽  
Vol 114 (1) ◽  
pp. 89-96 ◽  
Author(s):  
G. Manley ◽  
R. N. Mullinger ◽  
P. H. Lloyd

1. Glycosaminoglycans were liberated from old and young human ascending aortae by digestion with papain. Heparan sulphate and chondroitin sulphate were separated by the different solubilities of their complexes with cetylpyridinium chloride in solutions of sodium chloride. Final fractionation was achieved by salt-gradient column chromatography on Dowex 1 (Cl−form). 2. Heparan sulphate from old aortae showed a slight, but consistent, increase in sulphation compared with heparan sulphate from young aortae. 3. The major amino acids associated with aortic heparan sulphate and chondroitin sulphate were serine, glycine, glutamic acid and aspartic acid. Heparan sulphate and chondroitin sulphate from old aortae contained about twice as much total amino acid as heparan sulphate and chondroitin sulphate from young aortae. Alkali hydrolysis resulted in the destruction of more serine in chondroitin sulphate from old, compared with young, aortae. 4. Molecular weights of glycosaminoglycans from old and young aortae were found to be similar, and in the region of 35000. 5. It is suggested that there is an increased degree of protein–glycosaminoglycan cross-linking in old aortae.


1987 ◽  
Vol 245 (1) ◽  
pp. 229-234 ◽  
Author(s):  
T Krusius ◽  
V N Reinhold ◽  
R K Margolis ◽  
R U Margolis

We have previously described the structures of neutral and sialylated O-glycosidic mannose-linked tetrasaccharides and keratan sulphate polysaccharide chains in the chondroitin sulphate proteoglycan of brain. The present paper provides information on a series of related sialylated and/or sulphated tri- to penta-saccharides released by alkaline-borohydride treatment of the proteoglycan glycopeptides. The oligosaccharides were fractionated by ion-exchange chromatography and gel filtration, and their structural properties were studied by methylation analysis and fast-atom-bombardment mass spectrometry. Five fractions containing [35S]sulphate-labelled oligosaccharides were obtained by ion-exchange chromatography, each of which was eluted from Sephadex G-50 as two well-separated peaks. The apparent Mr values of both the large- and small-molecular-size fractions increased with increasing acidity (and sulphate labelling) of the oligosaccharides. The larger-molecular-size fractions contained short mannose-linked keratan sulphate chains of Mr 3000-4500, together with some asparagine-linked oligosaccharides. The smaller tri- to penta-saccharides, of Mr 800-1400, appear to have a common GlcNac(beta 1-3)Manol core, and to contain one to two residues of sialic acid and/or sulphate.


1997 ◽  
Vol 92 (5) ◽  
pp. 511-517 ◽  
Author(s):  
CH Hansen ◽  
B. Fraiture ◽  
R. Rouhi ◽  
E. Otto ◽  
G. Förster ◽  
...  

1. Orbital accumulation of hydrophilic, interstitial glycosaminoglycans (GAGs) and subsequent expansion of retrobulbar tissue lead to the clinical manifestation of exophthalmos in patients with Graves' eye disease. 2. A highly specific method to determine the concentration and biochemical composition of different GAGs was developed in order to obtain a sensitive test system for the activity of the disease. By means of this method, GAG excretion in 24 h urine collections of 56 patients and 21 controls was analysed by precipitation with cetylpyridinium chloride and potassium acetate in ethanol, followed by sequential enzymic hydrolysis with chondroitin AC lyase, chondroitin ABC lyase and hyaluronate lyase, with HPLC analysis of the resulting α,β-unsaturated disaccharides by anion-exchange chromatography. 3. Concentrations of GAG, chondroitin sulphate A (CA), dermatan sulphate (DS) and hyaluronic acid (HA) were determined in patients and controls, with high recovery rates [72.2 ± 5.3%, mean ± SEM; detection limit, 4.2 μg/l (0.01 μmol/l)], revealing marked differences in urinary concentrations of total GAG and HA, as well as an elevation of CA in patients compared with controls. 4. Method sensitivity was 0.86 for patients with active Graves' eye disease, and 0.87 for patients with untreated ophthalmopathy, whereas specificity was 1.0 for patients with inactive disease. Patients with increased GAG concentration responded well to steroids and/or orbital irradiation (before therapy: GAG, 111.49 ± 40.32; CA, 59.58 ± 21.34; DS, 25.05 ± 8.12; HA, 26.88 ± 11.63 mg/24 h; during therapy: GAG, 54.22 ± 10.94; CA, 20.52 ± 4.58; DS, 17.65 ± 3.46; HA, 16.05 ± 3.69 mg/24 h), whereas GAG excretion increased markedly 2–3 months after stopping prednisone therapy in patients with still active eye disease (GAG, 109.9 ± 10.51; CA, 63.8 ± 7.34; DS, 24.1 ± 5.07; HA, 22.0 ± 6.28 mg/24 h). 5. This sensitive method determines the nature of renally excreted GAGs, reflecting the aberrant synthesis pattern of fibroblasts in patients with Graves' disease.


1972 ◽  
Vol 128 (2) ◽  
pp. 205-213 ◽  
Author(s):  
C. J. Handley ◽  
C. F. Phelps

1. Bovine corneas were incubated in vitro with [U-14C]glucose. 2. The glycosaminoglycans of corneal stroma were isolated and fractionated on cetylpyridinium chloride–cellulose columns. The major components were keratan sulphate (71%), chondroitin 4-sulphate (17%) and chondroitin 6-sulphate (4%). 3. The acid-soluble nucleotides and intermediates of glycosaminoglycan biosynthesis of corneal stroma were separated on Dowex 1 (formate form) and the tissue content and cellular concentrations were determined. 4. The rates of synthesis of the intermediates of glycosaminoglycan biosynthesis in corneal stroma were determined. 5. The incorporation of radioactivity from [U-14C]glucose into the uronic acid and hexosamine components of the glycosaminoglycans present in corneal stroma were measured and the turnover rates of these polymers were calculated. It was found that keratan sulphate was turning over in about 723h and chondroitin 6-sulphate in 251h.


1991 ◽  
Vol 278 (3) ◽  
pp. 779-785 ◽  
Author(s):  
J M Dickenson ◽  
T N Huckerby ◽  
I A Nieduszynski

Keratan sulphate chains were isolated from bovine tracheal ring cartilage (15-18-month-old animals) after papain digestion of the tissue followed by ethanol fractionation, chondroitinase ABC digestion and alkaline borohydride reduction. The keratan sulphate chains were further purified by anion-exchange chromatography on a Pharmacia Mono-Q column in order to remove any contaminating chondroitin sulphate and O-linked oligosaccharides. The chains were then treated with keratanase and the digest was subjected to alkaline borohydride reduction, producing oligosaccharides with galactitol at their reducing ends. The reduced digest was chromatographed on a Nucleosil 5 SB anion-exchange column and individual oligosaccharides were isolated. One of these, oligosaccharide (I), was shown by 500 MHz 1H-n.m.r. spectroscopy to have the following structure: NeuAc alpha 2-3Gal beta 1-4GlcNAc(6SO4) beta 1-3Gal-ol (I) The structure of this oligosaccharide shows that keratan sulphate chains from bovine tracheal ring cartilage may be terminated with N-acetylneuraminic acid linked alpha (2-3) to an unsulphated galactose. Keratan sulphate chains were also isolated from bovine femoral head cartilage (15-18-month-old animals) using an identical protocol, but with keratanase which was subsequently shown to have sialidase activity. This yielded oligosaccharide (II), the unsialyated version of (I): Gal beta 1-4GlcNAc(6SO4) beta 1-3Gal-ol (II).


1971 ◽  
Vol 122 (4) ◽  
pp. 477-485 ◽  
Author(s):  
Åke Wasteson

1. Chondroitin sulphate was isolated from bovine nasal septa by precipitation with cetylpyridinium chloride after digestion of the tissue with papain. 2. The material was divided into two portions, one of which was partially degraded with testicular hyaluronidase. 3. Untreated and hyaluronidase-digested material were fractionated into a total of eleven subfractions by gel chromatography on Sephadex G-200 and Sephadex G-100 respectively. 4. Chemical analyses indicated that the composition of all the fractions was similar to that of chondroitin sulphate. However, electrophoresis revealed a charge-inhomogeneity in the low-molecular-weight fractions obtained after hyaluronidase digestion. 5. The physicochemical properties of the subfractions were investigated by sedimentation-velocity, diffusion and sedimentation-equilibrium studies, osmometry, viscometry and gel chromatography. The individual fractions were essentially monodisperse and showed molecular weights ranging from 2400 to 36000. 6. The relationship between the intrinsic viscosity and the molecular weight was [η]=5.0×10−6×M1.14, indicating that the chondroitin sulphate molecules assume a shape intermediate between that of a random coil and a stiff rod. 7. The relationship between the sedimentation constant and the molecular weight (>104) was s020,w=2.3×10−2×M0.44.


1974 ◽  
Vol 143 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Wayne D. Comper ◽  
Barry N. Preston

The osmotic pressure of solutions of sulphated proteoglycans isolated from the intervertebral discs of animals of various ages was determined. The behaviour of the solutions in salt-added systems was investigated in terms of the Donnan distribution of the mobile ions. It is evident that this effect is the dominating factor in explaining the observed nonidealities. Although marked variations in the compositions of the proteoglycan, with regard to their chondroitin sulphate and keratan sulphate content and hence charge content, occur with increasing age of parent tissue, the osmotic activities of the various preparations are very similar. This is explained by the ‘fixation’ of the counterions in such a way as to counteract any change in the charge content of the polyion; an ‘osmotic buffering’ effect. The swelling behaviour of gelatin gels containing the proteoglycan preparations has been measured. In all cases pressures in excess of the sum of the osmotic pressures of the individual components are observed. However, the magnitude of the excess decreases with increasing age of the parent tissue. It is suggested that the age changes, as reflected by a decrease in water content of the gel system, are not the result of changes in the osmotic properties of the individual components but rather reflect changes in the entropic interaction of the proteoglycan with the gelatin matrix. The relevance of this observation to the situation in vivo is discussed.


1969 ◽  
Vol 113 (5) ◽  
pp. 885-894 ◽  
Author(s):  
C. P. Tsiganos ◽  
Helen Muir

1. Protein–polysaccharides from pig laryngeal cartilage extracted by two procedures described in the preceding paper (Tsiganos & Muir, 1969) were shown to consist of macromolecules of various sizes as assessed by gel filtration in 4% and 6% agarose. 2. A larger proportion of the smaller molecules was present in the preparation obtained by brief extraction in iso-osmotic sodium acetate (procedure I) than in that obtained by more prolonged extraction in 10% (w/v) calcium chloride (procedure II). 3. Two fractions were separated by gel filtration in 6% agarose and by electrophoresis in compressed glass fibre. These fractions differed in chemical composition and in antigenic determinants. The gel-retarded fraction R and that of higher electrophoretic mobility possessed the same single antigen, whereas the gel-excluded fraction E and the slower electrophoretic fraction contained all the antigens of the starting material including that of fraction R. 4. Five N-terminal amino acid residues were identified in preparation I and fraction E, only two of which were present in fraction R. 5. The relative proportions of gel-excluded and gel-retarded fractions did not change when solutions of high ionic strength, urea or guanidine hydrochloride were used for elution. 6. The differences in chemical and amino acid composition between fractions R and E showed that the latter was not a simple aggregate of the former. Fraction E contained more basic and aromatic amino acids, and some methionine and cystine; the last two were absent from fraction R. Hydroxyproline was not detected in either fraction. 7. The number of glycosidic linkages in both fractions was estimated by alkaline β-elimination. Appreciable amounts of threonine as well as serine were destroyed in both fractions. An average chain length for chondroitin sulphate was calculated from the galactosamine content of both fractions and the amounts of hydroxy amino acid destroyed. Average chain lengths were also calculated from the xylose and galactosamine content of each fraction. Each independent method gave a value of approximately 28 disaccharide units for the chain length in both fractions and hence their difference in size could not be explained by differences in the length of carbohydrate chains. 8. All fractions contained glucosamine, which was attributed to keratan sulphate. Content of both protein and keratan sulphate increased with the size of the macromolecules. 9. It is suggested, from these results, that chondroitin sulphate–protein complexes normally exist as a heterogeneous population of macromolecules in cartilage, and that keratan sulphate is involved in the formation of larger molecules.


1971 ◽  
Vol 125 (4) ◽  
pp. 1119-1129 ◽  
Author(s):  
Sören Ögren ◽  
Ulf Lindahl

1. Heparin was prepared from mouse mastocytoma tissue by mild procedures, including extraction of mast-cell granules with 2m-potassium chloride, precipitation of the extracted polysaccharide with cetylpyridinium chloride from 0.8m-potassium chloride and finally digestion of the isolated material with testicular hyaluronidase. The resulting product (fraction GEH) represented approx. 40% of the total heparin content of the tissue. 2. Fraction GEH was fractionated by gel chromatography on Sepharose 4B into three subfractions, with average molecular weights (¯Mw) of approx. 60000–70000 (highly polydisperse material), 26000 and 9000 respectively. Treatment of each of the subfractions with alkali or with papain did not affect their behaviour on gel chromatography. Amino acid and neutral sugar analyses indicated that the two low-molecular-weight fractions consisted largely of single polysaccharide chains lacking the carbohydrate–protein linkage region. It was suggested that these heparin molecules had been degraded by an endopolysaccharidase. 3. Pulse labelling in vivo of mastocytoma heparin with [35S]sulphate showed initial labelling of large molecules followed by a progressive shift of radioactivity toward fractions of lower molecular weight. Further, heparin-depolymerizing activity was demonstrated by incubating 35S-labelled heparin in vitro with a mastocytoma 10000g-supernatant fraction. Appreciable degradation of the polysaccharide occurred, as demonstrated by gel chromatography. In contrast, no depolymerization was observed on subjecting 14C-labelled chondroitin sulphate to the same procedure.


Sign in / Sign up

Export Citation Format

Share Document