scholarly journals Effects of lipid peroxidation on membrane-bound enzymes of the endoplasmic reticulum

1971 ◽  
Vol 123 (5) ◽  
pp. 983-991 ◽  
Author(s):  
E. D. Wills

1. Induction of the formation of lipid peroxide in suspensions of liver microsomal preparations by incubation with ascorbate or NADPH, or by treatment with ionizing radiation, leads to a marked decrease of the activity of glucose 6-phosphatase. 2. The effect of peroxidation can be imitated by treating microsomal suspensions with detergents such as deoxycholate or with phospholipases. 3. The substrate, glucose 6-phosphate, protects the glucose 6-phosphatase activity of microsomal preparations against peroxidation or detergents. 4. The loss of glucose 6-phosphatase activity is not due to the formation of hydroperoxide or formation of malonaldehyde or other breakdown products of peroxidation, all of which are not toxic to the enzyme. 5. All experiments lead to the conclusion that the loss of activity of glucose 6-phosphatase resulting from peroxidation is a consequence of loss of membrane structure essential for the activity of the enzyme. 6. In addition to glucose 6-phosphatase, oxidative demethylation of aminopyrine or p-chloro-N-methylaniline, hydroxylation of aniline, NADPH oxidation and menadione-dependent NADPH oxidation are also strongly inhibited by peroxidation. However, another group of enzymes separated with the microsomal fraction, including NAD+/NADP+ glycohydrolase, adenosine triphosphatase, esterase and NADH–cytochrome c reductase are not inactivated by peroxidation. This group is not readily inactivated by treatment with detergents. 7. Lipid peroxidation, by controlling membrane integrity, may exert a regulating effect on the oxidative metabolism and carbohydrate metabolism of the endoplasmic reticulum in vivo.

2000 ◽  
Vol 44 (6) ◽  
pp. 1418-1427 ◽  
Author(s):  
L. E. Alksne ◽  
P. Burgio ◽  
W. Hu ◽  
B. Feld ◽  
M. P. Singh ◽  
...  

ABSTRACT Protein secretion is an essential process for bacterial growth, yet there are few if any antimicrobial agents which inhibit secretion. An in vivo, high-throughput screen to detect secretion inhibitors was developed based on the translational autoregulation of one of the central protein components, SecA. The assay makes use of a SecA-LacZ fusion reporter construct in Escherichia coli which is induced when secretion is perturbed. Several compounds, including two natural product extracts, which had the ability to induce the reporter fusion were identified and the MICs of these compounds forStaphylococcus aureus strain MN8 were found to be ≤128 μg/ml. Enzyme-linked immunosorbent assay, Western blotting, and immunoprecipitation techniques were used to analyze the affects of these compounds on protein secretion. Six representative compounds presented here appear to be bona fide secretion inhibitors but were found to have deleterious effects on membranes. It was concluded that, while the method described here for identifying inhibitors of secretion is valid, screens such as this, which are directed against the membrane-bound portion of a pathway, may preferentially identify compounds which affect membrane integrity.


2002 ◽  
Vol 283 (3) ◽  
pp. F492-F498 ◽  
Author(s):  
Brian S. Cummings ◽  
Jane McHowat ◽  
Rick G. Schnellmann

Phospholipase A2(PLA2) hydrolyzes the sn-2 ester bond in phospholipids, releasing a fatty acid and a lysophospholipid. Recently, a novel 85-kDa membrane-bound-Ca2+-independent PLA2 (iPLA2) was identified in insect and bacterial cells transfected with candidate PLA2 sequences. However, few data exist demonstrating a membrane-bound-iPLA2 in mammalian cells, its subcellular localization, or its physiological role. Herein, we demonstrate the expression of an 85-kDa endoplasmic reticulum (ER)-Ca2+-iPLA2 (ER-iPLA2) in rabbit renal proximal tubule cells (RPTC) that is plasmalogen selective and is inhibited by the specific Ca2+-iPLA2inhibitor bromoenol lactone (BEL). RPTC exposed to tert-butylhydroperoxide for 24 h exhibited 20% oncosis compared with 2% in controls. Inhibition of ER-iPLA2 with BEL before tert-butylhydroperoxide exposure resulted in 50% oncosis. To determine whether this effect was common to oxidants, we tested the ability of BEL to potentiate oncosis induced by cumene hydroperoxide, menadione, duraquinone, cisplatin, and the nonoxidant antimycin A. All oxidants tested produced oncosis after 24 h, and prior inhibition of ER-iPLA2 potentiated oncosis at least twofold. In contrast, inhibition of ER-iPLA2 did not alter antimycin A-induced oncosis. Lipid peroxidation increased from 1.4- to 5.2-fold in RPTC treated with BEL before oxidant exposure, whereas no change was seen in antimycin A-treated RPTC. These results are the first to demonstrate the expression and subcellular localization of an ER-iPLA2. These results also suggest that ER-iPLA2 functions to protect against oxidant-induced lipid peroxidation and oncosis.


1978 ◽  
Vol 174 (2) ◽  
pp. 585-593 ◽  
Author(s):  
Catherine T. Hammer ◽  
Eric D. Wills

The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C20:5) and 17% docosahexaenoic acid (C22:6), but only 5.1% linoleic acid (C18:2) and 6.4% arachidonic acid (C20:4), feeding a corn-oil diet caused incorporation of 25.1% C18:2, 17.8% C20:4 and 2.5% C22:6 fatty acids, and feeding a lard diet caused incorporation of 10.3% C18:2, 13.5% C20:4 and 4.3% C22:6 fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C20:4 and C22:6 fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82±0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60±0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of α-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide concentration and rate of lipid peroxidation in the endoplasmic reticulum, but addition of the synthetic anti-oxidant 2,6-di-t-butyl-4-methylphenol to the diet (100mg/kg of diet) was ineffective. Treatment of the animals with phenobarbitone (1mg/ml of drinking water) caused a sharp fall in the rate of lipid peroxidation. It is concluded that the polyunsaturated fatty acid composition of the diet regulates the fatty acid composition of the liver endoplasmic reticulum, and this in turn is an important factor controlling the rate and extent of lipid peroxidation in vitro and possibly in vivo.


Weed Science ◽  
1985 ◽  
Vol 33 (6) ◽  
pp. 766-770 ◽  
Author(s):  
Karl J. Kunert ◽  
Carmen Homrighausen ◽  
Herbert Böhme ◽  
Peter Böger

Protein damage, as a primary phytotoxic consequence of in vivo lipid peroxidation, induced by the diphenyl ether herbicide oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] at a concentration of 10 μM, was measured with the green algaScenedesmus acutus. In the light, water-soluble proteins are destroyed by a herbicide-induced peroxidation process that can be detected by production of fluorescent products and loss of specific amino acid residues of proteins. The water-soluble cytochrome c-553 and the membrane-bound cytochrome f-553, components of the photosynthetic electron transport, were specifically used as sensitive markers for protein damage, measured as decrease of redox reactions of the cytochromes. Under peroxidizing conditions, destruction of the algal cytochrome c is significantly higher than destruction of membrane-bound components, such as cytochrome f and chlorophyll. Protection against protein loss is achieved by the nonbiological antioxidant ethoxyquin (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline) or the photosynthesis inhibitor diuron [N′-(3,4-dichlorophenyl)-N,N-dimethylurea].


1974 ◽  
Vol 140 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Néstor F. González-Cadavid ◽  
Carmen Sáez De Córdova

The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [14C]leucine and δ-amino[14C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.


1981 ◽  
Vol 196 (2) ◽  
pp. 585-589 ◽  
Author(s):  
M B Cooper ◽  
M R Estall ◽  
B R Rabin

1. The phospholipid bilayer of intact vesicles from smooth endoplasmic reticulum is impermeable to macromolecules. Specific and non-specific proteinases were used to investigate the site of membrane proteins in the transverse plane of the bilayer. 2. When two proteinases were used in conjunction, denaturing effects additional to proteolysis were observed on cytochrome P-450 content and glucose 6-phosphatase activity which did not depend on the integrity of the phospholipid bilayer. 3. When lipid peroxidation was inhibited, these effects were not observed.


1986 ◽  
Vol 64 (11) ◽  
pp. 1115-1124 ◽  
Author(s):  
W. C. McMurray

As is the case for the assembly of protein components of the membranes in animal mitochandria, the bilayer phospholipids arise from a complicated interplay of intra- and extra-mitochondrial reactions. Our early studies indicated that the bulk of mitochondrial phospholipids (typified by phosphatidylcholine) had their origin in the endoplasmic reticulum and were transported to the mitochondria as complexes with phospholipid-exchange proteins. The polyglycerophosphatides (typified by diphosphatidylglycerol) were apparently synthesized in situ by intramitochondrial membrane-bound enzymes using CDP-diglycerides as intermediates. The case for the precursors in the latter pathway is less clear, although evidence has been presented for dual localization of enzymes for glycerophosphate acylation and CTP:phosphatidate cytidylyl transfer in both mitochondria and microsomes. Phosphatidylethanolamine also shows evidence for two sites of origin: by translocation from its site of synthesis in the endoplasmic reticulum and by translocation of phosphatidylserine followed by decarboxylation within the mitochondria. In the latter case mitochondrial phosphatidylserine decarboxylase may play an important role in the regulation of phospholipid metabolism throughout the cell.


Sign in / Sign up

Export Citation Format

Share Document