Oxyfluorfen and Lipid Peroxidation: Protein Damage as a Phytotoxic Consequence

Weed Science ◽  
1985 ◽  
Vol 33 (6) ◽  
pp. 766-770 ◽  
Author(s):  
Karl J. Kunert ◽  
Carmen Homrighausen ◽  
Herbert Böhme ◽  
Peter Böger

Protein damage, as a primary phytotoxic consequence of in vivo lipid peroxidation, induced by the diphenyl ether herbicide oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] at a concentration of 10 μM, was measured with the green algaScenedesmus acutus. In the light, water-soluble proteins are destroyed by a herbicide-induced peroxidation process that can be detected by production of fluorescent products and loss of specific amino acid residues of proteins. The water-soluble cytochrome c-553 and the membrane-bound cytochrome f-553, components of the photosynthetic electron transport, were specifically used as sensitive markers for protein damage, measured as decrease of redox reactions of the cytochromes. Under peroxidizing conditions, destruction of the algal cytochrome c is significantly higher than destruction of membrane-bound components, such as cytochrome f and chlorophyll. Protection against protein loss is achieved by the nonbiological antioxidant ethoxyquin (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline) or the photosynthesis inhibitor diuron [N′-(3,4-dichlorophenyl)-N,N-dimethylurea].

2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


1979 ◽  
Vol 34 (11) ◽  
pp. 948-950 ◽  
Author(s):  
Carl Fedtke ◽  
Robert R. Schmidt

Abstract The enzymatic activity from sugar beet leaves which is responsible for the detoxification of the herbicide metamitron (4-amino-4,5-dihydro-3-methyl-6-phenyl-1, 2, 4-triazin-5-one, trade name Goltix®) has been characterized in vitro. The detoxification occurs by rapid deamination in vivo as well as in vitro. However, the deamination in vitro is only maximal under reducing conditions, i. e. with an electron donor and in a nitrogen atmosphere. The electron donor may be cystein, glutathione, dithionite or ascorbate. The enzymatic deamination further requires the addition of cytochrome c and a “supernatant factor”, which may be replaced by FMN, FAD or DCPIP. However, in the presence of FMN or DCPIP cytochrome c is not essential but only stimulatory. The partic­ulate as well as the soluble metamitron deaminating enzyme preparations obtained take up oxygen when supplied with cysteine and FMN. The particulate enzyme appears in the peroxysome-fraction. It is therefore suggested, that the enzymatic deamination of metamitron in sugar beet leaves is mediated by a proxisomal membrane bound electron transport system which alternatively may reduce oxygen or metamitron (deaminating).


2005 ◽  
Vol 387 (3) ◽  
pp. 865-870 ◽  
Author(s):  
Alison M. WINGER ◽  
A. Harvey MILLAR ◽  
David A. DAY

We have investigated the effect of the lipid peroxidation product, HNE (4-hydroxy-2-nonenal), on plant mitochondrial electron transport. In mitochondria isolated from Arabidopsis thaliana cell cultures, HNE inhibited succinate-dependent oxygen consumption via the Aox (alternative oxidase), but had minimal effect on respiration via Cox (cytochrome c oxidase). Maximal Cox activity, measured with reduced cytochrome c as substrate, was only slightly inhibited by high concentrations of HNE, at which Aox was completely inhibited. Incubation with HNE prevented dimerization of the Aox protein, suggesting that one site of modification was the conserved cysteine residue involved in dimerization and activation of this enzyme (CysI). However, a naturally occurring isoform of Aox lacking CysI and unable to be dimerized, LeAox1b from tomato (Lycopersicon esculentum), was equally sensitive to HNE inhibition, showing that other amino acid residues in Aox also interact with HNE. The presence of HNE in vivo in Arabidopsis cell cultures was also investigated. Induction of oxidative stress in the cell cultures by the addition of hydrogen peroxide, antimycin A or menadione, caused a significant increase in hydroxyalkenals (of which HNE is the most prominent). Western blotting of mitochondrial proteins with antibodies against HNE adducts, demonstrated significant modification of proteins during these treatments. The implications of these results for the response of plants to reactive oxygen species are discussed.


1980 ◽  
Vol 188 (2) ◽  
pp. 351-361 ◽  
Author(s):  
A C Stewart ◽  
D S Bendall

1. A cell-free preparation of membrane fragments was prepared from the thermophilic blue-green alga Phormidium laminosum by lysozyme treatment of the cells followed by osmotic shock to lyse the spheroplasts. The membrane fragments showed high rates of photosynthetic electron transport and O2 evolution (180-250 mumol of O2/h per mg of chlorophyll a with 2,6-dimethyl-1,4-benzoquinone as electron acceptor). O2-evolution activity was stable provided that cations (e.g. 10mM-Mg2+ or 100mM-Na+) or glycerol (25%, v/v) were present in the suspending medium. 2. The components of the electron-transport chain in P. laminosum were similar to those of other blue-green algae: the cells contained Pigment P700, plastocyanin, soluble high-potential cytochrome c-553, soluble low-potential cytochrome c-54 and membrane-bound cytochromes f, b-563 and b-559 (both low- and high-potential forms). The amounts and midpoint potentials of the membrane-bound cytochromes were similar to those in higher-plant chloroplasts. 3. Although O2 evolution in P. laminosum spheroplasts was resistant to high temperatures, thermal stability was not retained in the cell-free preparation. However, in contrast with higher plants, O2 evolution in P. laminosum membrane fragments was remarkably resistant to the non-ionic detergent Triton X-100.


1974 ◽  
Vol 140 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Néstor F. González-Cadavid ◽  
Carmen Sáez De Córdova

The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [14C]leucine and δ-amino[14C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.


2021 ◽  
Vol 1 (5) ◽  
pp. 6-13
Author(s):  
L. A. Romodin ◽  

As means of cancer therapy, cytochrome C can be used, which can trigger a cascade of apoptotic reactions in the cytosol, as well as its complex with cardiolipin, which triggers lipid peroxidation, which can ultimately lead to cell death by the mechanism of apoptosis or ferroptosis. This article presents the possibility of using cytochrome C and its complex with phospholipids for the treatment of cancer, as well as the main problems associated with this. The main problem is the development of an effective means of delivering a cytotoxic agent to target cells in vivo. If all problems are solved, the use of free cytochrome C should trigger apoptosis of cancer cells, and the cytochrome C complex with cardiolipin or phosphatidic acid should trigger necrosis – like programmed death by the mechanisms of necroptosis, pyroptosis or ferroptosis.


1971 ◽  
Vol 123 (5) ◽  
pp. 983-991 ◽  
Author(s):  
E. D. Wills

1. Induction of the formation of lipid peroxide in suspensions of liver microsomal preparations by incubation with ascorbate or NADPH, or by treatment with ionizing radiation, leads to a marked decrease of the activity of glucose 6-phosphatase. 2. The effect of peroxidation can be imitated by treating microsomal suspensions with detergents such as deoxycholate or with phospholipases. 3. The substrate, glucose 6-phosphate, protects the glucose 6-phosphatase activity of microsomal preparations against peroxidation or detergents. 4. The loss of glucose 6-phosphatase activity is not due to the formation of hydroperoxide or formation of malonaldehyde or other breakdown products of peroxidation, all of which are not toxic to the enzyme. 5. All experiments lead to the conclusion that the loss of activity of glucose 6-phosphatase resulting from peroxidation is a consequence of loss of membrane structure essential for the activity of the enzyme. 6. In addition to glucose 6-phosphatase, oxidative demethylation of aminopyrine or p-chloro-N-methylaniline, hydroxylation of aniline, NADPH oxidation and menadione-dependent NADPH oxidation are also strongly inhibited by peroxidation. However, another group of enzymes separated with the microsomal fraction, including NAD+/NADP+ glycohydrolase, adenosine triphosphatase, esterase and NADH–cytochrome c reductase are not inactivated by peroxidation. This group is not readily inactivated by treatment with detergents. 7. Lipid peroxidation, by controlling membrane integrity, may exert a regulating effect on the oxidative metabolism and carbohydrate metabolism of the endoplasmic reticulum in vivo.


1981 ◽  
Vol 9 (2) ◽  
pp. 358P-358P
Author(s):  
Yun Li ◽  
Kevin Leonard ◽  
Hanns Weiss

Cytochrome c1 is a subunit of ubiquinol: cytochrome c reductase (E.C.1.10.2.2.). In Neurospora grown in the presence of chloramphenicol, the subunit is inserted only into the bilayer of the mitochondrial inner membranes without associating with other proteins. By limited proteolytic digestion of the cytochrome c1-Triton complex with chymotrypsin, a large water soluble monomeric cytochrome c1 fragment was prepared. The 24,000 Mr fragment and the 31,000 Mr cytochrome c1 have the same spectra and cytochrome c binding properties. These results are used to propose a two-part model for cytochrome c1. A large hydrophilic part extends from the mitochondrial inner membrane into the intermembrane space. This part carries the heme and interacts with cytochrome c. A second, smaller hydrophobic part anchors the cytochrome c1 to the bilayer.


1973 ◽  
Vol 28 (11-12) ◽  
pp. 717-721 ◽  
Author(s):  
Walter Oettmeier ◽  
Wolfgang Lockau

Abstract Photosynthetic cytochrome c reduction by isolated chloroplasts is mediated by substances with characteristics of a "Cytochrome c Reducing Substance" (CRS). A water soluble extract of ether treated, lyophilized chloroplasts (called Sʟ-eth), related to the primary acceptor complex of photo­ system I, has CRS-activity. It contains p-coumaroyl-meso-tartaric acid. By comparison with model substances, the CRS-activity in chloroplasts is attributed to the iron complex of this compound. A number of other iron complexes and numerous quinones with redox potentials from - 220 mV to + 300 mV are also shown to possess CRS-activity. The CRS preparation from the blue green alga Anabaena cylindrica, as first described by Fujita and Myers, contains Fe3+/EDTA, which has all the chemical and functional properties as reported for CRS


Sign in / Sign up

Export Citation Format

Share Document