scholarly journals The macromolecular properties of blood-group-specific glycoproteins. Characterization of a series of fractions obtained by solvent fractionation

1974 ◽  
Vol 143 (1) ◽  
pp. 159-170 ◽  
Author(s):  
J. Michael Creeth ◽  
K. Ramakrishnan Bhaskar ◽  
Alastair S. R. Donald ◽  
Walter T. J. Morgan

1. The glycoprotein components of a human ovarian-cyst fluid were isolated by a solvent [95% (w/w) phenol]-extraction procedure; the phenol-insoluble water-soluble glycoprotein was further fractionated by (NH4)2SO4 and by ethanol to yield eight fractions. 2. The fractions were analysed in terms of amino acids, fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid. Variations occurred, particularly in the proportion of peptide; these were partly correlated with varying extent of serological activity. 3. The fractions were characterized physicochemically in terms of buoyant density and degree of spreading in a density gradient, sedimentation velocity and molecular weight; their partial specific volumes and specific refraction increments were also determined. 4. The fractions showed wide variations in their sedimentation-velocity and density-gradient patterns, and gave evidence of pauci-dispersity in density. The fraction regarded as the most typical blood-group-specific glycoprotein sedimented as a single rapidly spreading peak and was of high molecular weight. 5. Significant correlations were observed between the physical properties of the glycoprotein fractions and the amount of their peptide component. The buoyant densities and sedimentation coefficients varied in a manner that suggested the existence of two families of glycoproteins. 6. It is suggested that variability in the extent of glycosylation, or in the degree of cross-linking, might account for the two families of glycoproteins, and that the extent of cross-linkage might also be a factor determining the solubility of these glycoproteins in hot saturated (NH4)2SO4.

1970 ◽  
Vol 117 (5) ◽  
pp. 879-891 ◽  
Author(s):  
J. M. Creeth ◽  
M. A. Denborough

1. The method of sedimentation equilibrium in a gradient of caesium chloride has been applied to the preparation of blood-group-specific glycoproteins from human ovarian-cyst fluids: it is shown that virtually complete separation from contaminating protein is easily accomplished in a single step. 2. The glycoproteins isolated in this way have been characterized by analytical density-gradient experiments in both caesium chloride and caesium sulphate and values of the buoyant density, selective solvation and apparent molecular weight have been obtained. 3. In some cases, materials prepared from the same cysts by solvent extraction methods have also been characterized in these terms. 4. The selective solvation values are about 0.1 and 0.5g of water/g of glycoprotein in caesium chloride and caesium sulphate respectively. 5. The apparent molecular-weight values are much lower than the weight-average molecular weights, and it is shown that the origin of the discrepancy is heterogeneity in density of the glycoproteins. 6. Some sources of error in the interpretation of density-gradient schlieren patterns are examined.


1974 ◽  
Vol 143 (3) ◽  
pp. 669-679 ◽  
Author(s):  
K. Ramakrishnan Bhaskar ◽  
J. Michael Creeth

1. Equilibrium density-gradient ultracentrifugation in caesium salts was used in two stages in the isolation and subfractionation of the glycoprotein component from a human ovarian-cyst fluid. The eight main subfractions thus obtained were the subject of detailed physicochemical characterization. 2. The fractions were unimodal in buoyant-density distribution, but had discrete ρ0 values ranging from 1.31 to 1.35. 3. Weight-average molecular weights and sedimentation coefficients decreased regularly with decreasing density of the fraction, whereas the partial specific volumes and selective solvation parameters increased. The latter behaviour correlates well with the increasing peptide content of the lighter fractions. 4. The fractions exhibited a range of analytical composition, although all were within the limits previously observed for blood-group substances of Lea specificity. All fractions had approximately equal Lea activity. The peptide content varied systematically from 7% for the densest fraction to 15% for the lightest, but the relative distributions of the amino acids remained essentially constant throughout the series. In particular, serine plus threonine plus proline made up about 50% of the peptide content of all the fractions. Fucose, galactose and N-acetylglucosamine contents decreased with increasing peptide content of the fractions, but N-acetylgalactosamine and sialic acid exhibited the opposite trend. Molar ratios of N-acetylgalactosamine to the sum of serine and threonine remained essentially constant at 0.8–0.9, implying a high degree of glycosylation of all the molecules, but the ratio of N-acetylglucosamine to N-acetylgalactosamine decreased steadily with increasing peptide content, suggesting the presence of oligosaccharide side chains of various lengths. The results are discussed in terms of the accepted structure of glycoprotein molecules. 5. Experiments on the glycoproteins extracted with phenol from the same cyst fluid have confirmed that equilibrium centrifugation in caesium salts does not remove any non-covalently bound protein nor cause any changes in the tertiary structures of these glycoprotein molecules.


1979 ◽  
Vol 181 (3) ◽  
pp. 717-724 ◽  
Author(s):  
J M Creeth ◽  
J L Bridge ◽  
J R Horton

1. Some mucus glycoproteins form soluble complexes with lysozyme at neutral pH values. 2. The extent of complex-formation was determined, by an ultracentrifugal difference method, for a range of glycoproteins covering the common blood-group specificities. 3. Interaction was strongest with those glycoproteins of blood-group Lea specificity; these were also richest in sialic acid. 4. Interaction diminished with increase of ionic strength, and was not detectable at I 0.50; however, an asialoglycoprotein was found to retain some activity. The interaction is accordingly primarily, but probably not exclusively, coulombic in origin. 5. The buoyant density of lysozyme in CsCl, CsBr, CsI and Cs2SO4 was determined; the values in the last three salts are anomalously high. This finding accounts for the previously noted difficulty of separating free protein from glycoproteins by single-stage centrifugation in CsBr. 6. Conditions for effective separation of glycoproteins from secretions containing lysozyme by density-gradient centrifugation are reported.


1966 ◽  
Vol 12 (9) ◽  
pp. 634-636
Author(s):  
Jesse H Marymont ◽  
Morris London

Abstract This note describes a simple heat clot-extraction procedure for separation of water soluble 14C-labeled compounds of low molecular weight from serum-in a form sufficiently pure to enumerate in a gas-flow counter. Data obtained with glucose-1- 14C and uric acid-1-14C are presented. Similar results have been obtained with 14C-labeled galactose, allantoin, tyrosine, phenylalanine, and leucine.


1977 ◽  
Vol 161 (3) ◽  
pp. 449-463 ◽  
Author(s):  
M J Creeth ◽  
J R Horton

1. Expressions are derived for the distribution at density-gradient equilibrium of macromolecules whose densities are (a) close to the values characterizing the solution limits or (b) outside the span of the gradient. 2. Density-distribution predicted by the expressions agree with those obtained by rigorous methods. 3. The distribution equations are applied to hypothetical mixtures of proteins and glycoproteins in commonly used density-gradient media to simulate separation and fractionation conditions. 4. It is shown that CsBr, although less efficient than CsCl for fractionation, is nevertheless adequate for most purposes; in analytical experiments it may often have advantages over CsCl. Limitations on the use of LiBr are explored. 5. An expression is derived which allows the variance of the partial specific volume of the macromolecular component to be determined from the variance of the buoyant density. It is shown that the relative resolving powers of different salts is expressed by their values of the quantity (formula: see text). 6. The equations are applied to a well-characterized glycoprotein preparation at equilibrium in CsCl and in Cs2SO4:it is shown that the much wider distribution in CsCl than in Cs2SO4 is explicable in terms of the variance in buoyant density and the solvation properties of the salts. 7. Limitations of the expressions arise when dispersity in density is represented by a low apparent molecular weight; realistic simulations can then only be obtained when the component is fully banded.


2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Netty Widyastuti ◽  
Teguh Baruji ◽  
Henky Isnawan ◽  
Priyo Wahyudi ◽  
Donowati Donowati

Beta glucan is a polysaccharide compound, generally not soluble inwater and resistant to acid. Beta glucan is used as an immunomodulator (enhancing the immune system) in mammals is usually a beta-glucan soluble in water, easily absorbed and has a low molecular weight. Several example of beta-glucan such as cellulose (β-1 ,4-glucan), lentinan (β-1 0.6-glucan) and (β-1 ,3-glucan), pleuran (β-1, 6 and β-1 ,3-glucan) are isolated from species of fungi Basidiomycota include mushrooms (Pleurotus ostreatus) and shiitake (Lentinus edodes).The purpose of thisresearch activity is to obtain beta-glucan compound that can be dissolved in water and in alkali derived from fungi Basidiomycota, i.e, Oyster mushrooms (Pleurotus ostreatus) and shiitake (Lentinus edodes). The result of beta-glucan compared to characterize the resulting beta glucan that is molecular structure . The difference of beta glucan extraction is based on the differences in solubility of beta-glucan. Beta glucan could be water soluble and insoluble water.


2021 ◽  
Vol 14 (4) ◽  
pp. 301
Author(s):  
Yayoi Kawano ◽  
Viorica Patrulea ◽  
Emmanuelle Sublet ◽  
Gerrit Borchard ◽  
Takuya Iyoda ◽  
...  

Hyaluronic acid (HA) has been known to play an important role in wound healing process. However, the effect of molecular weight (MW) of exogenously administered HA on the wound healing process has not been fully understood. In this study, we investigated HA with different MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.


Sign in / Sign up

Export Citation Format

Share Document