scholarly journals Poly(adenosine diphosphate ribose) polymerase in Physarum polycephalum

1975 ◽  
Vol 147 (1) ◽  
pp. 119-129 ◽  
Author(s):  
M D Brightwell ◽  
C E Leech ◽  
M K O'Farrell ◽  
W J Whish ◽  
S Shall

1. The isolated nuclei of the slime mould Physarum polycephalum contain an enzyme that will incorporated [adenine-3H] NAD+ into an acid-insoluble product, which is shown to be poly(ADP-ribose). 2. This incorporation has an optimum pH of 8.2 and a temperature optimum below 10degreesC. 3. Optimum stimulation is given by 15 mM-Mg2+. 4. 2-Mercaptoethanol or dithiothreitol also stimulates the incorporation, the latter at an optimum concentration of about 1 mM. 5. Under optimum conditions the Km value for the reaction is 0.28 mM at 15degreesC. Nicotinamide inhibits the incorporation with a Ki of 5.7 muM. 6. Exogenous DNA stimulates the incorporation by about 100%. 7. Preincubation of the nuclei with deoxyribonuclease, but not with ribonuclease, almost completely inactivates the incorporation of NAD+. 8. The enzyme is unstable at both 0degrees and 15degreesC in the absence of dithiothreitol. The presence of dithiothreitol at a concentration of 1 mM stabilizes the enzyme at both these temperatures. 9. The activity of this enzyme per nucleus was shown in three separate experiments to fall by about one-half in early S phase and then to rise to its pre-mitotic value after about 3 h, that is in late S phase. 10. The possible physiological function of this enzyme system is discussed.

1978 ◽  
Vol 56 (8) ◽  
pp. 784-790 ◽  
Author(s):  
G. G. Poirier ◽  
P. Savard ◽  
D. Rajotte ◽  
J. Morisset ◽  
A. Lord

The isolated nuclei of rat pancreas contain an enzyme system that will incorporate 3H-labeled NAD into an acid-insoluble product, which is shown to be poly(ADP-ribose). The enzyme has an optimum pH of 7.8 and the optimum temperature is between 20 and 30 °C. Optimum Mg2+ concentration is 8 mM and dithiothreitol also stimulates the enzyme at a concentration of 8 mM. Under standard conditions, the Km value for the reaction is 0.25 mM and an inhibition by the substrate is observed at high substrate concentrations. It has also been found that only one basic nuclear protein, that is, histone H1, is modified by the synthetase. An average chain length of 5.0 is found in the nuclei and of 4.5 on histone H1. Radioautographic studies show that poly(ADP-ribose) is closely associated with chromatin.


1985 ◽  
Vol 232 (1) ◽  
pp. 21-24 ◽  
Author(s):  
P Gröbner ◽  
P Loidl

ADP-ribosyltransferase was measured in isolated nuclei of Physarum polycephalum. Activity was determined with and without exogenous DNA and histones. During the synchronous cell cycle the activity measured with exogenous substrates exhibited a typical peak enzyme pattern with a maximum of activity in S-phase, whereas activity measured without exogenous substrates displayed a step enzyme pattern. Both activities doubled in each cell cycle.


1993 ◽  
Vol 105 (4) ◽  
pp. 1121-1130 ◽  
Author(s):  
S. Lang ◽  
T. Decristoforo ◽  
W. Waitz ◽  
P. Loidl

We have investigated biochemical and ultrastructural aspects of the nuclear matrix during the naturally synchronous cell cycle of Physarum polycephalum. The morphology of the in situ nuclear matrix exhibited significant cell cycle changes as revealed by electron microscopic examination, especially during the progression of nuclei through mitosis and S-phase. In mitosis the interchromatin matrix was found to be retracted to the nuclear periphery; during S-phase this interchromatin matrix gradually resembled, concomitant with the reconstruction of a nucleolar remnant structure. During the G2-period no significant changes in matrix morphology were observed. The pattern of nuclear matrix proteins was invariant during the cell cycle; no cycle phase-specific proteins could be detected. In vivo labelling of plasmodia with [35S]methionine/cysteine showed that only a few proteins are synthesized and assembled into nuclear matrix structures in a cell cycle-dependent way; the majority of proteins were synthesized almost continuously. This was also shown for nuclear lamins homologues. In contrast to bulk nuclear histones, those histones that remain tightly bound to the nuclear matrix were synthesized and assembled into nuclear structures in the very first hour of S-phase; assembly was terminated in mid-S-phase, indicating that nuclear matrix-bound chromatin is replicated early in S-phase. Comparison of the acetylation pattern of matrix-bound histone H4 with bulk nuclear H4 revealed a largely elevated acetate content of matrix H4. The percentage of acetylated subspecies was entirely different from that in bulk nuclear H4, indicating that matrix-associated histones represent a subpopulation of nuclear histones with distinct properties, reflecting specific structural requirements of matrix-attached chromatin.


2004 ◽  
Vol 24 (8) ◽  
pp. 3198-3212 ◽  
Author(s):  
Jorge Z. Torres ◽  
Sandra L. Schnakenberg ◽  
Virginia A. Zakian

ABSTRACT Rrm3p is a 5′-to-3′ DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.


2011 ◽  
Vol 5 (3) ◽  
pp. 14-21
Author(s):  
Muhamed Omar Abdulatif ◽  
Hyder H. Assmaeel ◽  
Raghad kadhim Obeid ◽  
Ayat Adnan Abbas

he Xylanase producing strain Aspergillus niger was isolated from soil on potato dextrose agar in the presence of xylan as its first substrate for primary isolation, and then grown under liquid medium fermentation in the presence of crude xylan (rice husk) to produce D-Xylanase. the optimum conditions were determined as follows: the Optimum pH for xylanase production was found pH 5.0, xylanase was induced by xylan (rice husk) 0.1% and the production was (61.221 U/ml) and nitrogen source Yeast extract recorded highest enzyme production( 89.71 U/ml), and repressed by carbon source xylose the highest enzyme production (88.69 U/ml). The optimum temperature was 40°с for xylanase production was (35.15 U/ml), the optimum period after 7 days of incubation was (52.33 U/ml) ,the optimum substrate concentration 0.1% was (45.95 U/ml), and the optimum inoculum size was 1 x 106 (spore /ml) recorded (57.19 U/ml ).


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 641 ◽  
Author(s):  
Thanapon Charoenwongpaiboon ◽  
Rath Pichyangkura ◽  
Robert A. Field ◽  
Manchumas Hengsakul Prousoontorn

Fructooligosaccharides are well-known carbohydrate molecules that exhibit good probiotic activity and are widely used as sweeteners. Inulin-type fructooligosaccharides (IFOs) can be synthesized from sucrose using inulosucrase. In this study, cross-linked enzyme aggregates (CLEAs) of Lactobacillus reuteri 121 inulosucrase (R483A-LrInu) were prepared and used as a biocatalyst for IFOs production. Under optimum conditions, R483A-LrInu CLEAs retained 42% of original inulosucrase activity. Biochemical characterization demonstrated that the optimum pH of inulosucrase changed from 5 to 4 after immobilization, while the optimum temperature was unchanged. Furthermore, the pH stability and thermostability of the R483A-LrInu CLEAs was significantly improved. IFOs product characterization indicated that the product specificity of the enzyme was impacted by CLEA generation, producing a narrower range of IFOs than the soluble enzyme. In addition, the R483A-LrInu CLEAs showed operational stability in the batch synthesis of IFOs.


1966 ◽  
Vol 31 (3) ◽  
pp. 577-583 ◽  
Author(s):  
J. E. Cummins ◽  
H. P. Rusch

Actidione (cycloheximide), an antibiotic inhibitor of protein synthesis, blocked the incorporation of leucine and lysine during the S phase of Physarum polycephalum. Actidione added during the early prophase period in which mitosis is blocked totally inhibited the initiation of DNA synthesis. Actidione treatment in late prophase, which permitted mitosis in the absence of protein synthesis, permitted initiation of a round of DNA replication making up between 20 and 30% of the unreplicated nuclear DNA. Actidione treatment during the S phase permitted a round of replication similar to the effect at the beginning of S. The DNA synthesized in the presence of actidione was replicated semiconservatively and was stable through at least the mitosis following antibiotic removal. Experiments in which fluorodeoxyuridine inhibition was followed by thymidine reversal in the presence of actidione suggest that the early rounds of DNA replication must be completed before later rounds are initiated.


1976 ◽  
Vol 172 (1) ◽  
pp. 224-229 ◽  
Author(s):  
Miyoko Tanaka ◽  
Masanao Miwa ◽  
Taijiro Matsushima ◽  
Takashi Sugimura ◽  
Sydney Shall

1985 ◽  
Vol 225 (2) ◽  
pp. 429-434 ◽  
Author(s):  
A Isoai ◽  
I Yasumasu

The activity of ADP-ribosyltransferase in nuclei isolated from sea-urchin embryos was estimated by the incorporation of [adenosine-14C]NAD+ into the acid-insoluble fraction. Hydrolysis of this acid-insoluble product by snake venom phosphodiesterase yielded radioactive 5′-AMP and phosphoribosyl-AMP. The incorporation of [14C]-NAD+ was inhibited by 3-aminobenzamide and nicotinamide, potent inhibitors of ADP-ribosyltransferase. [14C]NAD+ incorporation into the acid-insoluble fraction results from the reaction of ADP-ribosyltransferase. The optimum pH for the enzyme in isolated nuclei was 7.5. The enzyme, in 50 mM-Tris/HCl buffer, pH 7.5, containing 0.5 mM-NAD+ and 0.5 mM-dithiothreitol, exhibited the highest activity at 18 degrees C in the presence of 14 mM-MgCl2. The apparent Km value for NAD+ was 25 microM. The activity of the enzyme was measured in nuclei isolated from the embryos at several stages during early development. The activity was maximum at the 16-32-cell stage and then decreased to a minimum at the mesenchyme blastula stage. Thereafter its activity slightly increased at the onset of gastrulation and decreased again at the prism stage.


1980 ◽  
Vol 188 (3) ◽  
pp. 807-815 ◽  
Author(s):  
E A Vasilyeva ◽  
A F Fitin ◽  
I B Minkov ◽  
A D Vinogradov

The short preincubation of submitochondrial particles with low concentrations of ADP in the presence of Mg2+ results in a complete loss of their ATPase and inosine triphosphatase activities. Other nucleoside diphosphates (IDP and GDP) do not affect the ATPase activity. The ADP-inhibited ATPase can be activated in a time-dependent manner by treatment of submitochondrial particles with the enzyme converting ADP into ATP (phosphoenolpyruvate plus pyruvate kinase). The activaton is a first-order reaction with rate constant 0.2 min-1 at 25 degrees C. The rate constant of activation is increased in the presence of ATP up to 2 min-1, and this increase shows saturation kinetics with Km value equal to that for ATPase reaction itself (10(-4) M at 25 degrees C at pH 8.0). The experimental results obtained are consistent with the model where two alternative pathways of ADP dissociation from the inhibitory site of ATPase exist; one is spontaneous dissociation and the second is ATP-dependent dissociation through the formation of the ternary complex between ADP, the enzyme and ATP. ADP-induced inactivation and ATP-dependent activation of ATPase activity of submitochondrial particles is accompanied by the same directed change of their ability to catalyse the ATP-dependent reverse electron transport from succinate to NAD+. The possible implication of the model suggested is discussed in terms of functional role of the inhibitory high-affinity binding site for ADP in the mitochondrial ATPase.


Sign in / Sign up

Export Citation Format

Share Document