scholarly journals Sources of ammonia for mammalian urea synthesis

1978 ◽  
Vol 176 (3) ◽  
pp. 733-737 ◽  
Author(s):  
H A Krebs ◽  
R Hems ◽  
P Lund ◽  
D Halliday ◽  
W W Read

The initial rate of incorporation of [15N]alanine into the 6-amino group of the adenine nucleotides in rat hepatocytes was about one-eighteenth of the rate of incorporation into urea. Thus the purine nucleotide cycle cannot provide most of the ammonia needed in urea synthesis for the carbamoyl phosphate synthase reaction (EC 2.7.2.5). On the other hand, contrary to the view expressed by McGivan & Chappell [(1975) FEBS Lett. 52, 1–7], the experiments support the view that hepatic glutamate dehydrogenase can supply the required ammonia.

1983 ◽  
Vol 212 (3) ◽  
pp. 705-711 ◽  
Author(s):  
T Strzelecki ◽  
J Rogulski ◽  
S Angielski

To test the significance of the purine nucleotide cycle in renal ammoniagenesis, studies were conducted with rat kidney cortical slices using glutamate or glutamine labelled in the alpha-amino group with 15N. Glucose production by normal kidney slices with 2 mM-glutamine was equal to that with 3 mM-glutamate. With L-[15N]glutamate as sole substrate, one-third of the total ammonia produced by kidney slices was labelled, indicating significant deamination of glutamate or other amino acids from the cellular pool. Ammonia produced from the amino group of L-[alpha-15N]glutamine was 4-fold higher than from glutamate at similar glucose production rates. Glucose and ammonia formation from glutamine by kidney slices obtained from rats with chronic metabolic acidosis was found to be 70% higher than by normal kidney slices. The contribution of the amino group of glutamine to total ammonia production was similar in both types of kidneys. No 15N was found in the amino group of adenine nucleotides after incubation of kidney slices from normal or chronically acidotic rats with labelled glutamine. Addition of Pi, a strong inhibitor of AMP deaminase, had no effect on ammonia formation from glutamine. Likewise, fructose, which may induce a decrease in endogenous Pi, had no effect on ammonia formation. The data obtained suggest that the contribution of the purine nucleotide cycle to ammonia formation from glutamine in rat renal tissue is insignificant.


1988 ◽  
Vol 252 (2) ◽  
pp. 381-386 ◽  
Author(s):  
Z Kovacević ◽  
D Jerance ◽  
O Brkljac

It is proposed that the purine nucleotide cycle and glutamine oxidation play a key role in the adaptation of tumour energetics to the transition from the anaerobic to the aerobic state. In support of this proposal, it was found that glutamine and inosine markedly increase total adenylates in the presence of oxygen, whereas the addition of hadacidin abolishes this effect. Transition of the cells from the anaerobic to the aerobic state, and vice versa, in the presence of glutamine plus inosine revealed that there are two components of the adenine nucleotide pool, one which is stable and the other which is variable and responds to the aerobic-anaerobic transition. This part of the pool undergoes degradation or resynthesis owing to activation of the enzymes of the purine nucleotide cycle. Resynthesis of the pool is accompanied by substantial net utilization of aspartate, which is produced by glutamine oxidation. This is supported by the experiments in which the cells were alternately incubated with nitrogen or oxygen, demonstrating that hadacidin significantly decreased utilization of aspartate and regeneration of ATP owing to inhibition of adenylosuccinate synthase.


1973 ◽  
Vol 131 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Paul C. Engel ◽  
William Ferdinand

1. Lineweaver–Burk plots for glutamate dehydrogenase, glucose 6-phosphate dehydrogenase and several other enzymes show one or more abrupt transitions between apparently linear sections. These transitions correspond to abrupt increases in the apparent Km and Vmax. with increasing concentration of the varied substrate. 2. The generalized reciprocal initial-rate equation for a multi-site enzyme requires several restrictions to be put on it in order to generate such plots. These mathematical conditions are explored. 3. It is shown that the effective omission of a term in the denominator of the reciprocal initial-rate equation represents a minimal requirement for generation of abrupt transitions. This corresponds in physical terms to negative co-operativity followed by positive co-operativity affecting the catalytic rate constant for the reaction. 4. Previous models for glutamate dehydrogenase cannot adequately account for the results. On the other hand, the model based on both negative and positive co-operativity gives a good fit to the experimental points. 5. The conclusions are discussed in relation to current knowledge of the structure and mechanism of glutamate dehydrogenase.


1986 ◽  
Vol 234 (1) ◽  
pp. 185-192 ◽  
Author(s):  
M Yudkoff ◽  
I Nissim ◽  
K Hummeler ◽  
M Medow ◽  
D Pleasure

The metabolism of 0.25 mM-[15N]glutamic acid in cultured astrocytes was studied with gas chromatography-mass spectrometry. Almost all 15N was found as [2-15N]glutamine, [2-15N]glutamine, [5-15N]glutamine and [15N]alanine after 210 min of incubation. Some incorporation of 15N into aspartate and the 6-amino position of the adenine nucleotides also was observed, the latter reflecting activity of the purine nucleotide cycle. After the addition of [15N]glutamate the ammonia concentration in the medium declined, but the intracellular ATP concentration was unchanged despite concomitant ATP consumption in the glutamine synthetase reaction. Some potential sources of glutamate nitrogen were identified by incubating the astrocytes for 24 h with [5-15N]glutamine, [2-15N]glutamine or [15N]alanine. Significant labelling of glutamate was noted with addition of glutamine labelled on either the amino or the amide moiety, reflecting both glutaminase activity and reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. Alanine nitrogen also is an important source of glutamate nitrogen in this system.


1974 ◽  
Vol 32 (3) ◽  
pp. 539-548 ◽  
Author(s):  
L. V. Turner ◽  
E. B. Fern

1. The purine nucleotide cycle has been proposed (Lowenstein, 1972) as an alternative scheme for amino acid deamination in tissues, such as skeletal muscle, having low concentrations of glutamate dehydrogenase (EC 1.4.1.2).2. Activities of AMP deaminase (EC 3.5.4.6), one of the enzymes of the cycle, have been measured in soleus, plantaris and extensor digitorum longus muscles of rats maintained for 18 d on diets providing 0, 0·035 or 0·10 net dietary protein energy (energy supplied by utilizable protein: total metabolizable energy, NDp:E), and in rats given the 0·10 NDp:E diet for 3 d after the 0 or 0·035 NDp:E regimens.3. Concentration of AMP deaminase in the different muscles from the control (0·10 NDp:E diet) rats appeared to bear an inverse relationship to the proportion of mitochondria-rich fibres (i.e. rich in glutamate dehydrogenase) in each muscle.4. Dietary protein deprivation (0 or 0·035 NDp:E) led to adaptive reductions in AMP-deaminase activity in the soleus and plantaris muscles, but in the extensor muscle the 0·035 NDp:E diet produced no change, while the 0 NDp:E diet caused an increase in activity.5. Refeeding the 0·10 NDp:E diet to the protein-deprived rats caused reductions of AMP-deaminase activity to lower levels in all three muscles, except in the instance of soleus in rats refed after the 0·035 NPp:E diet.6. In view of the different responses shown by the three muscles to the dietary treatments, the importance of specifying the particular muscles used in future nutritional studies is emphasized.7. The adaptive changes in AMP deaminase are discussed in terms of operation of the purine nucleotide cycle for amino acid deamination responding to the changes in amino acid catabolism known to be caused in muscle by these protein-deficient diets.


1983 ◽  
Vol 210 (3) ◽  
pp. 695-698 ◽  
Author(s):  
R T Bogusky ◽  
L M Lowenstein ◽  
T T Aoki

The effect of 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase [GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32], was tested on NH3 formation via the purine nucleotide cycle and glutamate dehydrogenase (EC 1.4.1.2). NH3 excretion in rats increased 70-fold after 48 h of NH4Cl feeding, from 12.2 +/- 4.5 to 862 +/- 190 mumol/mg of creatinine. At 4 h after a single intraperitoneal injection of 3-mercaptopicolinate into NH4Cl-fed rats, NH3 excretion was inhibited by 93%. Kidneys of NH4Cl-fed plus 3-mercaptopicolinate-treated rats, compared with those of NH4Cl-fed rats, showed a 3.5-fold increase in the content of IMP, 5-fold increase in adenylosuccinate, 4-fold increase in aspartate, and a 30% increase in AMP. 3-Mercaptopicolinate completely inhibited NH3 and glucose formation from glutamate in tubules from acidotic rats and NH3 formation from aspartate in kidney perfusion experiments. When transamination in tubules was prevented by 2-amino-4-methoxy-trans-but-3-enoic acid, formation of glucose, but not of NH3, from glutamate was inhibited. 3-Mercaptopicolinate completely inhibited NH3 formation from aspartate in the presence of the aminotransferase inhibitor in kidney tubules. The data show that NH3 can be formed via glutamate dehydrogenase and the purine nucleotide cycle at significant and approximately equal rates. 3-Mercaptopicolinate has no direct effect on NH3 formation via glutamate dehydrogenase, but inhibits that via the purine nucleotide cycle. We conclude that gluconeogenesis is not regulatory for NH3 formation in kidney.


1983 ◽  
Vol 216 (1) ◽  
pp. 233-236 ◽  
Author(s):  
F X Coude ◽  
G Grimber ◽  
P Parvy ◽  
D Rabier ◽  
F Petit

Valproate (0.5-5 mM) strongly inhibited urea synthesis in isolated rat hepatocytes incubated with 10 mM-alanine and 3 mM-ornithine. Valproate at the same concentrations markedly decreased concentrations of N-acetylglutamate, an essential activator of carbamoyl-phosphate synthetase I (EC 6.3.4.16), in parallel with the inhibition of urea synthesis by valproate. This compound also lowered the cellular concentration of acetyl-CoA, a substrate of N-acetylglutamate synthase (EC 2.3.1.1); glutamate, aspartate and citrulline were similarly decreased. Valproate in a dose up to 2 mM did not significantly affect the cellular concentration of ATP and had no direct effect on N-acetylglutamate synthesis, carbamoyl-phosphate synthetase I and ornithine transcarbamoylase (EC 2.1.3.3) activities.


1981 ◽  
Vol 196 (1) ◽  
pp. 323-326 ◽  
Author(s):  
R T Bogusky ◽  
K A Steele ◽  
L M Lowenstein

The effect of chronic acid feeding and its subsequent withdrawal was determined on the amounts of the metabolic intermediates and enzymic activities of the purine nucleotide cycle. Sprague-Dawley rats were given 1.5% (w/v) NH4Cl in their drinking water for 5 days. The renal excretion of NH3 rose 70-fold and the rats developed acidosis. The amount of renal IMP rose from a control value of 4.5 +/- 2.2 to 20.4 +/- 3.7nmol/g of kidney after 48h of acid feeding (P less than 0.001) and fell to normal within 48h of the recovery. Adenylosuccinate concentrations fell from a control value of 4.5 +/- 0.9nmol/g of kidney to 1.2 +/- 0.3nmol/g (P less than 0.005) by day 5 of acidosis and continued to fall to undetectable values by 48h after recovery. The amount of AMP remained constant through the acid-feeding and the recovery periods. The activity of adenylosuccinate synthetase, the rate-limiting enzyme of the purine nucleotide cycle, paralleled the rise and fall in NH3 excretion. The activities of phosphate-dependent glutaminase and glutamate dehydrogenase were elevated during the acid-feeding and the recovery period. Thus changes in the purine nucleotide cycle correlate with changes in NH3 excretion to a more parallel degree than does the activity of glutaminase or glutamate dehydrogenase.


1990 ◽  
Vol 270 (1) ◽  
pp. 77-82 ◽  
Author(s):  
T Barber ◽  
J García de la Asunción ◽  
I R Puertes ◽  
J R Viña

1. Amino acid metabolism was studied in control virgin rats, lactating rats and virgin rats protein-pair-fed with the lactating rats (high-protein virgin rats). 2. Urinary excretion of nitrogen and urea was higher in lactating than in control virgin rats, and in high-protein virgin rats it was higher than in lactating rats. 3. The activities of urea-cycle enzymes (units/g) were higher in high-protein virgin than in lactating rats, except for arginase. In lactating rats the activities of carbamoyl-phosphate synthase, ornithine carbamoyltransferase and argininosuccinate synthase were lower than in control virgin rats. When the liver size is considered, the activities in lactating rats were similar to those in high-protein virgin rats, except for arginase. 4. N-Acetylglutamate content was higher in high-protein virgin rats than in the other two groups. 5. The rate of urea synthesis from precursors by isolated hepatocytes was higher in high-protein virgin rats than in the other two groups. 6. The flooding-dose method (L-[4-3H]phenylalanine) for measuring protein synthesis was used. The absolute synthesis rates of mammary gland, liver and small-intestinal mucosa were higher in lactating rats than in the other two groups, and in high-protein virgin rats than in control virgin rats 7. These results show that the increased needs for amino acids during lactation are met by hyperphagia and by a nitrogen-sparing mechanism.


1970 ◽  
Vol 117 (1) ◽  
pp. 91-96 ◽  
Author(s):  
J. T. Brosnan ◽  
H. A. Krebs ◽  
D. H. Williamson

1. Changes in the concentrations of ammonia, glutamine, glutamate, 2-oxoglutarate, 3-hydroxybutyrate, acetoacetate, alanine, aspartate, malate, lactate, pyruvate, NAD+, NADH and adenine nucleotides were measured in freeze-clamped rat liver during ischaemia. 2. Although the concentrations of most of the metabolites changed rapidly during ischaemia the ratios [glutamate]/[2-oxoglutarate][NH4+] and [3-hydroxybutyrate]/[acetoacetate] changed equally and the value of the expression [3-hydroxybutyrate][2-oxoglutarate][NH4+]/[acetoacetate][glutamate] remained approximately constant, indicating that the 3-hydroxybutyrate dehydrogenase and glutamate dehydrogenase systems were at near-equilibrium with the mitochondrial NAD+ couple. 3. The value of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] was about 0.7 in vivo and remained fairly constant during the ischaemic period of 5min, although the concentrations of alanine and oxoglutarate changed substantially. No explanation can be offered why the value of the ratio differed from that of the equilibrium constant of the alanine aminotransferase reaction, which is 1.48. 4. Injection of l-cycloserine 60min before the rats were killed increased the concentration of alanine in the liver fourfold and decreased the concentration of the other metabolites measured, except that of pyruvate. During ischaemia the concentration of alanine did not change but that of aspartate almost doubled. 5. After treatment with l-cycloserine the value in vivo of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] rose from 0.7 to 2.4. During ischaemia the value returned to 0.8. 6. The effects of l-cycloserine are consistent with the assumption that it specifically inhibits alanine aminotransferase. 7. Most of the alanine formed during ischaemia is probably derived from pyruvate and from ammonia released by the deamination of adenine nucleotides and glutamine. The alanine is presumably formed by the combined action of glutamate dehydrogenase and alanine aminotransferase. 8. The rate of anaerobic glycolysis, calculated from the increase in the lactate concentration, was 1.3μmol/min per g fresh wt. 9. Although the concentrations of the adenine nucleotides changed rapidly during ischaemia, the ratio [ATP][AMP]/[ADP]2 remained constant at 0.54, indicating that adenylate kinase established near-equilibrium under these conditions.


Sign in / Sign up

Export Citation Format

Share Document