scholarly journals The nature of the microfibrillar glycoproteins of elastic fibres. A biosynthetic study

1981 ◽  
Vol 194 (2) ◽  
pp. 587-598 ◽  
Author(s):  
C H J Sear ◽  
M E Grant ◽  
D S Jackson

1. Cell cultures propagated from foetal bovine ligamentum nuchae synthesized and secreted two glycoproteins, designated MFP I and MFP II, that are closely related to elastic-fibre microfibrils. Glycoproteins MFP I (apparent mol.wt. 150 000) and MFP II (apparent mol.wt. 300 000) were metabolically labelled, separated from other culture-medium components by immunoprecipitation with a specific anti-(microfibrillar protein) serum, and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and sodium dodecyl sulphate/gel-filtration chromatography. 2. Ligament cells also synthesized and secreted fibronectin, but salt-fractionation and immunoprecipitation studies with a specific anti-(cold-insoluble globulin) serum established that neither glycoprotein MFP I nor glycoprotein MFP II was related to fibronectin. 3. The secretion of glycoprotein MFP I, but not that of glycoprotein MFP II, was enhanced by the addition of ascorbate to the culture medium. 4. Ascorbate-supplemented ligament cells incorporated [3H]proline into glycoprotein MFP I, and 36% of the nondiffusible proline residues were hydroxylated, exclusively as 4-hydroxy[3H]proline. Less than 1% of the total proline residues in [3H]proline-labelled glycoprotein MFP II were hydroxylated. 5. Ascorbate-supplemented cells incorporated [14C]lysine into glycoprotein MFP I and 30% of the non-diffusible lysine residues were hydroxylated. 6. Newly secreted glycoprotein MFP I was digested by highly purified bacterial collagenase to yield polypeptide fragments of apparent mol.wts. 50 000 and 30 000. Glycoprotein MFP II was not digested by bacterial collagenase. 7. The results suggest that elastic-fibre microfibrils are composed of a novel collagenous glycoprotein MFP I in association, as yet undefined, with a non-collagenous glycoprotein MFP II.

1985 ◽  
Vol 232 (1) ◽  
pp. 151-160 ◽  
Author(s):  
G J Hart ◽  
A R Battersby

Uroporphyrinogen III synthase (co-synthetase) purified from Euglena gracilis is a monomer of Mr 38 500 by gel-filtration studies and 31 000 by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The pI is apparently in the range 4.8-5.1. No evidence for any cofactors was found, and folate derivatives were shown to be absent; no metal ions appear to be present in the enzyme. The Km for hydroxymethylbilane is in the range 12-40 microM, and the product, uroporphyrinogen III, is an inhibitor. Modification studies suggest that arginine residues are essential for the activity of co-synthetase; lysine residues may also be essential, but histidine, cysteine and tyrosine residues are not.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1978 ◽  
Vol 169 (2) ◽  
pp. 265-276 ◽  
Author(s):  
David E. Woolley ◽  
Robert W. Glanville ◽  
Dennis R. Roberts ◽  
John M. Evanson

1. The neutral collagenase released into the culture medium by explants of human skin tissue was purified by ultrafiltration and column chromatography. The final enzyme preparation had a specific activity against thermally reconstituted collagen fibrils of 32μg of collagen degraded/min per mg of enzyme protein, representing a 266-fold increase over that of the culture medium. Electrophoresis in polyacrylamide disc gels showed it to migrate as a single protein band from which enzyme activity could be eluted. Chromatographic and polyacrylamide-gel-elution experiments provided no evidence for the existence of more than one active collagenase. 2. The molecular weight of the enzyme estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was approx. 60000. The purified collagenase, having a pH optimum of 7.5–8.5, did not hydrolyse the synthetic collagen peptide 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg-OH and had no non-specific proteinase activity when examined against non-collagenous proteins. 3. It attacked undenatured collagen in solution at 25°C, producing the two characteristic products TCA(¾) and TCB(¼). Collagen types I, II and III were all cleaved in a similar manner by the enzyme at 25°C, but under similar conditions basement-membrane collagen appeared not to be susceptible to collagenase attack. At 37°C the enzyme attacked gelatin, producing initially three-quarter and one-quarter fragments of the α-chains, which were degraded further at a lower rate. As judged by the release of soluble hydroxyproline peptides and electron microscopy, the purified enzyme degraded insoluble collagen derived from human skin at 37°C, but at a rate much lower than that for reconstituted collagen fibrils. 4. Inhibition of the skin collagenase was obtained with EDTA, 1,10-phenanthroline, cysteine, dithiothreitol and sodium aurothiomaleate. Cartilage proteoglycans did not inhibit the enzyme. The serum proteins α2-macroglobulin and β1-anti-collagenase both inhibited the enzyme, but α1-anti-trypsin did not. 5. The physicochemical and enzymic properties of the skin enzyme are discussed in relation to those of other human collagenases.


1976 ◽  
Vol 159 (1) ◽  
pp. 181-184 ◽  
Author(s):  
N Paskin ◽  
R J Mayer

Fatty acid synthetase purified from the mammary gland of the rabbit has a mol. wt. of 968000 as determined by gel filtration. The enzyme gave one band, corresponding to a mol.wt. of approx. 35000, on polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate and phenylmethanesulphonyl fluoride.


1981 ◽  
Vol 195 (1) ◽  
pp. 159-165 ◽  
Author(s):  
T E Cawston ◽  
W A Galloway ◽  
E Mercer ◽  
G Murphy ◽  
J J Reynolds

1. Rabbit bones in tissue culture synthesize an inhibitor of collagenase during the first 4 days of culture. 2. The inhibitor was purified by a combination of gel filtration, concanavalin A--Sepharose chromatography, ion-exchange chromatography and zinc-chelate affinity chromatography. 3. The purified inhibitor migrated as a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and had a mol.wt. of 28000. 4. The inhibitor blocked the activity of the metalloproteinases collagenase, gelatinase, neutral proteinase III (proteoglycanase), human leucocyte collagenase and gelatinase, but not thermolysin or bacterial collagenase. The serine proteinases plasmin and trypsin were not inhibited. 5. The inhibitor interacted with purified rabbit bone collagenase with 1:1 stoichiometry. 6. The inhibitory activity was lost after incubation for 1 h at 90 degrees C, after treatment with trypsin (250 micrograms/ml) at 37 degrees C for 30 min and after reduction and alkylation.


1979 ◽  
Vol 181 (3) ◽  
pp. 667-676 ◽  
Author(s):  
M Wohllebe ◽  
D J Carmichael

alpha- and beta-Chains were isolated by sequential ion-exchange and gel-filtration chromatography of guanidinium chloride-soluble dentine collagen obtained from Tris/NaCl-extracted EDTA-demineralized lathyritic-rat incisors. The alpha-chains were identified as alpha 1 I and alpha 2 by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and amino acid analysis of the intact chains and their CNBr peptides. The dentine alpha-chains exhibited higher lysine hydroxylation and phosphate content, but lower hydroxylysine glycosylation, than alpha-chains from skin. Increased lysine hydroxylation was observed in the helical sequences. The alpha 1 I/alpha 2 ratio was approx. 3:1, and was presumably due to the presence of (alpha 1 I)3 molecules along with (alpha 1 I)2 alpha 2 molecules as shown recently for neutral-salt-soluble dentine collagen [Wohllebe & Carmichael (1978) Eur. J. Biochem. 92, 183–188]. In the borohydride-reduced beta 11- and beta 12-chains from guanidinium chloride-soluble dentine collagen, the reduced cross-links hydroxylysinohydroxynorleucine and hydroxylysinonorleucine were present. A higher proportion of hydroxylysinonorleucine in the reduced beta 12-chain probably reflects differences in extent of hydroxylation of specific lysine residues of the alpha 1 I- and alpha 2-chains.


1985 ◽  
Vol 31 (2) ◽  
pp. 149-153 ◽  
Author(s):  
Resham S. Bhella ◽  
Illimar Altosaar

Alpha-amylase was purified from the extracellular culture medium of Aspergillus awamori by means of ethanol precipitation. Sephacryl-200 gel filtration and anion-exchange chromatography on Dowex (AG1-X4) resin. The enzyme preparation was found to be homogeneous by means of sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The purified enzyme had a molecular weight of 54 000 ± 2 500 and its isoelectric point was pH 4.2. The enzyme was found to be most active between pH 4.8 and 5.0 and was stable between pH 3.5 and 6.5. The optimal temperature for the enzyme activity was around 50 °C and the enzyme was stable for at least 1 h up to 45 °C retaining more than 80% of its original activity. The Km (37 °C, pH 5.3) for starch hydrolysis was 1.0 g∙L−1 and maltose inhibited the enzyme activity uncompetitively with a K1 value of 20.05 g∙L−1


1985 ◽  
Vol 231 (3) ◽  
pp. 505-510 ◽  
Author(s):  
E Mercer ◽  
T E Cawston ◽  
M de Silva ◽  
B L Hazleman

A metalloproteinase inhibitor present in human rheumatoid synovial fluid was purified by a combination of heparin-Sepharose chromatography, concanavalin A-Sepharose chromatography, ion-exchange chromatography and gel filtration. The Mr of the purified inhibitor was 28000 by SDS/polyacrylamide-gel electrophoresis and 30000 by gel filtration. The inhibitor blocked the activity of the metalloproteinases collagenase, gelatinase and proteoglycanase, but not thermolysin or bacterial collagenase. The serine proteinase trypsin was not inhibited. The inhibitory activity was lost after treatment with trypsin (0.5 micrograms/ml) at 37 degrees C for 30 min, 4-aminophenylmercuric acetate (1 mM) at 37 degrees C for 3 h, after incubation for 30 min at 90 degrees C and by reduction and alkylation. These properties suggest that the inhibitor closely resembles the tissue inhibitor of metalloproteinases (‘TIMP’) recently purified from connective-tissue culture medium.


2010 ◽  
Vol 65 (7-8) ◽  
pp. 528-531 ◽  
Author(s):  
Alapati Kavitha ◽  
Muvva Vijayalakshmi

Cultural factors affecting the production of L-asparaginase by Streptomyces tendae isolated from laterite soil samples of Guntur region were investigated on glycerolasparagine- salts (modified ISP-5) broth. Optimal yields of L-asparaginase were recorded in the culture medium with the initial pH 7.0 incubated at 30 °C for 72 h. The strain utilized sucrose (2%) and yeast (2%) extract as carbon and nitrogen sources for L-asparaginase production. The productivity of L-asparaginase was slightly enhanced when the strain was treated with cell-disrupting agents like EDTA. The crude enzyme was purifi ed to homogeneity by ammonium sulfate precipitation, Sephadex G-100 and CM-Sephadex G-50 gel filtration. By employing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of the enzyme was recorded as 97.4 kDa. This is the first report on production and purification of L-asparaginase from S. tendae.


1974 ◽  
Vol 137 (3) ◽  
pp. 489-495 ◽  
Author(s):  
M. A. Kerr ◽  
A. J. Kenny

1. Some properties of a brush-border neutral endopeptidase purified from rabbit kidney were investigated. The peptidase was assayed by its ability to hydrolyse [125I]iodoinsulin B chain. 2. The enzyme was found to be homogeneous when studied in the analytical ultracentrifuge and stained as a single glycoprotein band after electrophoresis in polyacrylamide gels. 3. The molecular weight was estimated by gel filtration in columns of Sephadex G-200, by polyacrylamide-gel electrophoresis in the presence of 2-mercapto-ethanol and sodium dodecyl sulphate and by sedimentation equilibrium in the ultra-centrifuge. The estimates fell within the range 87000–96000. The mean from two sedimentation equilibrium experiments was 93000, though this estimate may be slightly inflated because of the carbohydrate component of the enzyme. No evidence of dissociation into smaller subunits was obtained in the presence of thiol, sodium dodecyl sulphate or guanidine hydrochloride. 4. The endopeptidase was maximally active at pH6.0, although in phosphate buffer, which was strongly inhibitory, an optimum above pH8 was observed. 5. The enzyme was not affected by di-isopropyl phosphofluoridate nor by several thiol reagents. It was, however, strongly inhibited by many thiols and by EDTA and other chelating agents. 6. Although activity of the EDTA-treated enzyme could be partially restored by various bivalent metal ions, the optimum concentration for its reactivation by Zn2+ was lower than that for other ions. This metal was detected in the enzyme preparation by atomic absorption spectrophotometry in an amount equivalent to approximately one atom/mol. 7. The enzyme is the only endopeptidase shown to be located in the kidney brush border and is the first mammalian example of a neutral Zn2+- activated endopeptidase to be characterized.


Sign in / Sign up

Export Citation Format

Share Document