scholarly journals Purification and properties of uroporphyrinogen III synthase (co-synthetase) from Euglena gracilis

1985 ◽  
Vol 232 (1) ◽  
pp. 151-160 ◽  
Author(s):  
G J Hart ◽  
A R Battersby

Uroporphyrinogen III synthase (co-synthetase) purified from Euglena gracilis is a monomer of Mr 38 500 by gel-filtration studies and 31 000 by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The pI is apparently in the range 4.8-5.1. No evidence for any cofactors was found, and folate derivatives were shown to be absent; no metal ions appear to be present in the enzyme. The Km for hydroxymethylbilane is in the range 12-40 microM, and the product, uroporphyrinogen III, is an inhibitor. Modification studies suggest that arginine residues are essential for the activity of co-synthetase; lysine residues may also be essential, but histidine, cysteine and tyrosine residues are not.

1976 ◽  
Vol 159 (1) ◽  
pp. 181-184 ◽  
Author(s):  
N Paskin ◽  
R J Mayer

Fatty acid synthetase purified from the mammary gland of the rabbit has a mol. wt. of 968000 as determined by gel filtration. The enzyme gave one band, corresponding to a mol.wt. of approx. 35000, on polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate and phenylmethanesulphonyl fluoride.


1983 ◽  
Vol 213 (1) ◽  
pp. 187-191 ◽  
Author(s):  
A Lewendon ◽  
J R Coggins

A procedure for the purification of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli is described. Homogeneous enzyme of specific activity 17.7 units/mg was obtained in 22% yield. The key purification step involves substrate elution of the enzyme from a cellulose phosphate column. The subunit Mr was estimated to be 49 000 by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The native Mr was estimated to be 55 000 by gel filtration, indicating that the enzyme is monomeric.


1981 ◽  
Vol 193 (2) ◽  
pp. 647-650 ◽  
Author(s):  
C A Auffret ◽  
M J Turner

Purified variant specific antigens of Trypanosoma brucei were shown to exist in solution as dimers, and occasionally as higher oligomers, as judged by gel filtration and by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis after treatment with bifunctional cross-linking reagents.


1980 ◽  
Vol 185 (1) ◽  
pp. 203-210 ◽  
Author(s):  
L Barbieri ◽  
M Zamboni ◽  
L Montanaro ◽  
S Sperti ◽  
F Stirpe

1. The subunits were isolated of modeccin (subsequently referred to as modeccin 4B), the toxin purified from the roots of Adenia digitata by affinity chromatography on Sepharose 4B [Gasperi-Campani, Barbieri, Lorenzoni, Montanaro, Sperti, Bonetti & Stirpe (1978) Biochem J. 174, 491-496]. They are an A subunit (mol.wt. 26 000), which inhibits protein synthesis, and a B subunit (mol.wt. 31 000), which binds to cells. Both sununits, as well as intact modeccin, gave single bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, but showed some heterogeneity on isoelectric focusing and on polyacrylamide-gel electrophoresis at pH 9.5. 2. A second form of modeccin, not retained by Sepharose 4B, was purified by affinity chromatography on acid-treated Sepharose 6B: this form is subsequently termed modeccin 6B 3. Modeccin 6B has a molecular weight indistinguishable from that of modeccin 4B, and consists of two subunits of mol.wts. 27 000 and 31 000, joined by a disulphide bond. The subunits were not isolated because of their high insolubility in the absence of sodium dodecyl sulphate. 4. As compared with modeccin 4B, modeccin 6B is slightly less toxic to animals, does not agglutinate erythrocytes, and is a more potent inhibitor of protein synthesis in a lysate of rabbit reticulocytes, giving 50% inhibition at the concentration of 0.31 microgram/ml.


1983 ◽  
Vol 211 (2) ◽  
pp. 503-506 ◽  
Author(s):  
D J Miller ◽  
P M Wood

The purification of two soluble CO-binding cytochromes c from Nitrosomonas europaea is described. Cytochrome cCO−550 ran on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with an apparent Mr of 32 000, whereas for cytochrome cCO−552 the apparent Mr was 16 000. Redox potentials (Em, 7) were determined as +140 and −50mV respectively. Cytochrome cCO−550 was co-purified with a cytochrome c−553, for which an unusually high redox potential of +450mV was measured. These latter components were not resolved by gel-filtration chromatography or electrophoresis under denaturing conditions.


1992 ◽  
Vol 38 (5) ◽  
pp. 436-442 ◽  
Author(s):  
Devyani Dey ◽  
Jyoti Hinge ◽  
Abhay Shendye ◽  
Mala Rao

An alkalophilic thermophilic Bacillus sp. (NCIM 59) isolated from soil produced two types of cellulase-free xylanase at pH 10 and 50 °C. The two enzymes (xylanase I and II) were purified to homogeneity by ethanol precipitation followed by Bio-Gel P-10 gel filtration and preparative polyacrylamide gel electrophoresis. The molecular weights of xylanase I and II were estimated to be 35 000 and 15 800, respectively, by sodium dodecyl sulfate gel electrophoresis. The enzymes exhibited immunological cross-reactivity and were glycoproteins. They had similar temperature (50–60 °C) and pH (6) optima. Both xylanases were stable at 50 °C at pH 7 for 4 days. However, xylanase I was comparatively more stable than xylanase II at 60 °C. The isoelectric points of xylanase I and II were 4 and 8, respectively. The apparent Km values, using xylan as substrate, were 1.58 and 3.5 mg/mL, and Vmax values were 0.0172 and 0.742 μmol∙min−1∙mg−1, respectively. Both xylanases were inhibited by N-bromosuccinimide, suggesting the involvement of tryptophan in the active site. The hydrolysis patterns demonstrated that the xylanases were endoenzymes. Xylanase I and II yielded mainly xylobiose, xylotriose, and higher xylooligosaccharides, with traces of xylose from xylan. Key words: cellulase-free xylanase, alkalophilic thermophilic Bacillus sp., enzyme purification, characterization.


1999 ◽  
Vol 65 (8) ◽  
pp. 3470-3472 ◽  
Author(s):  
Giuliano Degrassi ◽  
Lasse Uotila ◽  
Raffaella Klima ◽  
Vittorio Venturi

ABSTRACT We purified an intracellular esterase that can function as anS-formylglutathione hydrolase from the yeastSaccharomyces cerevisiae. Its molecular mass was 40 kDa, as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was 5.0 by isoelectric focusing. The enzyme activity was optimal at 50°C and pH 7.0. The corresponding gene, YJLO68C, was identified by its N-terminal amino acid sequence and is not essential for cell viability. Null mutants have reduced esterase activities and grow slowly in the presence of formaldehyde. This enzyme may be involved in the detoxification of formaldehyde, which can be metabolized toS-formylglutathione by S. cerevisiae.


1976 ◽  
Vol 157 (2) ◽  
pp. 409-413 ◽  
Author(s):  
R K Airas ◽  
E A Hietanen ◽  
V T Nurmikko

Pantothenase (EC 3.5.1.22) from Pseudomonas fluorescens UK-1 was purified to homogeneity as judged by disc-gel electrophoresis and isoelectric focusing. The purification procedure consisted of four steps: DEAE-Sephadex chromatography, (NH4)2SO4 precipitation, hydroxyapatite chromatography and preparative polyacrylamide-gel electrophoresis. Gel filtration on Ultrogel AcA 34 was used to determine the molecular weight, and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis to study the subunit molecular weight. The enzyme appeared to be composed of two subunits with mol.wts. of approx. 50000 each. The total mol.wt. of the enzyme was thus about 100000. The isoelectric point was 4.7 at 10 degrees C.


1985 ◽  
Vol 226 (1) ◽  
pp. 147-153 ◽  
Author(s):  
D B Harper ◽  
J T Kennedy

An enzyme catalysing the O-methylation of isobutyraldoxime by S-adenosyl-L-methionine was isolated from Pseudomonas sp. N.C.I.B. 11652. The enzyme was purified 220-fold by DEAE-cellulose chromatography, (NH4)2SO4 fractionation, gel filtration on Sephadex G-100 and chromatography on calcium phosphate gel. Homogeneity of the enzyme preparation was confirmed by isoelectric focusing on polyacrylamide gel and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The enzyme showed a narrow pH optimum at 10.25, required thiol-protecting agents for activity and was rapidly denatured at temperatures above 35 degrees C. The Km values for isobutyraldoxime and S-adenosyl-L-methionine were respectively 0.24 mM and 0.15 mM. Studies on substrate specificity indicated that attack was mainly restricted to oximes of C4-C6 aldehydes, with preference being shown for those with branching in the 2- or 3-position. Ketoximes were not substrates for the enzyme. Gel filtration on Sephadex G-100 gave an Mr of 84 000 for the intact enzyme, and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated an Mr of 37 500, suggesting the presence of two subunits in the intact enzyme. S-Adenosylhomocysteine was a powerful competitive inhibitor of S-adenosylmethionine, with a Ki of 0.027 mM. The enzyme was also susceptible to inhibition by thiol-blocking reagents and heavy-metal ions. Mg2+ was not required for maximum activity.


1980 ◽  
Vol 191 (1) ◽  
pp. 37-43 ◽  
Author(s):  
A Gaal ◽  
H Y Neujahr

The inducible enzyme catalysing the conversion of cis, cis-muconate to (+)-muconolactone was purified 300-fold from the yeast Trichosporon cutaneum, grown on phenol. The enzyme has a sharp pH optimum at pH 6.6. It reacts also with several monohalogen derivatives and with one monomethyl derivative of cis, cis-muconate, but not with cis, trans- or trans, trans-muconate or 3-carboxy-cis, cis-muconate. In contrast with the corresponding enzymes in bacteria, the yeast enzyme does not require added divalent metal ions for activity and is not inhibited by EDTA. The purified enzyme can be resolved into two peaks by isoelectric focusing. The two forms have pI 4.58 (cis, cis-muconate cyclase I) and pI 4.74 (cis, cis-muconate cyclase II), respectively. Each of these is homogenous on polyacrylamide-gel electrophoresis in the absence or presence of sodium dodecyl sulphate. The two enzyme forms have the same molecular weight (50000) as determined by gel filtration and by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. They have the same Km value (25 microM) for cis, cis-muconate. They differ with respect to their content of free thiol groups. cis, cis-Muconate cyclase I contains one thiol group, essential for activity, but relatively stable upon storage. cis, cis-Muconate cyclase II contains two thiol groups that are readily oxidized during storage with concomitant loss of activity.


Sign in / Sign up

Export Citation Format

Share Document