scholarly journals The TATA-containing core promoter of the type II collagen gene (COL2A1) is the target of interferon-gamma-mediated inhibition in human chondrocytes: requirement for Stat1alpha, Jak1 and Jak2

2003 ◽  
Vol 369 (1) ◽  
pp. 103-115 ◽  
Author(s):  
Makoto OSAKI ◽  
Lujian TAN ◽  
Bob K. CHOY ◽  
Yasuhiro YOSHIDA ◽  
Kathryn S.E. CHEAH ◽  
...  

Interferon-γ (IFN-γ) inhibits the synthesis of the cartilage-specific extracellular matrix protein type II collagen, and suppresses the expression of the type II collagen gene (COL2A1) at the transcriptional level. To further examine this mechanism, the responses of COL2A1 regulatory sequences to IFN-γ and the role of components of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway were examined in the immortalized human chondrocyte cell line, C-28/I2. IFN-γ inhibited the mRNA levels of COL2A1 and aggrecan, but not Sox9, L-Sox5 and Sox6, all of which were expressed by these cells as markers of the differentiated phenotype. IFN-γ suppressed the expression of luciferase reporter constructs containing sequences of the COL2A1 promoter spanning −6368 to +125bp in the absence and presence of the intronic enhancer and stimulated activity of the γ-interferon-activated site (GAS) luciferase reporter vector, associated with induction of Stat1α-binding activity in nuclear extracts. These responses to IFN-γ were blocked by overexpression of the JAK inhibitor, JAK-binding protein (JAB), or reversed by dominant-negative Stat1α Y701F containing a mutation at Tyr-701, the JAK phosphorylation site. IFN-γ had no effect on COL2A1 promoter expression in Jak1 (U4A)-, Jak2 (γ2A)- and Stat1α (U3A)-deficient cell lines. In the U3A cell line, the response to IFN-γ was rescued by overexpression of Stat1α, but not by either Stat1α Y701F or Stat1β. Functional analysis using deletion constructs showed that the IFN-γ response was retained in the COL2A1 core promoter region spanning −45 to +11bp, containing the TATA-box and GC-rich sequences but no Stat1-binding elements. Inhibition of COL2A1 promoter activity by IFN-γ persisted in the presence of multiple deletions within the −45/+11bp region. Our results indicate that repression of COL2A1 gene transcription by IFN-γ requires Jak1, Jak2 and Stat1α and suggest that this response involves indirect interaction of activated Stat1α with the general transcriptional machinery that drives constitutive COL2A1 expression.

1998 ◽  
Vol 275 (6) ◽  
pp. L1110-L1119 ◽  
Author(s):  
Edward G. Barrett ◽  
Carl Johnston ◽  
Günter Oberdörster ◽  
Jacob N. Finkelstein

Recent evidence has suggested that epithelial cells may contribute to the inflammatory response in the lung after exposure to crystalline silica through the production of and response to specific growth factors, chemokines, and cytokines. However, the exact cellular and molecular responses of epithelial cells to silica exposure remains unclear. Using a murine alveolar type II cell line [murine lung epithelial (MLE)-15 cell line], we measured the early changes in various cytokine and chemokine mRNA species after exposure of the cells to 4–35 μg/cm2 of silica (cristobalite), interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) alone or in combination. Total mRNA was isolated and assayed with an RNase protection assay after 6 and 24 h of exposure. Cristobalite exposure alone led to an increase in monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-2, and regulated on activation normal T cells expressed and secreted (RANTES) mRNAs. Treatment with IFN-γ alone increased MCP-1 mRNA levels. Treatment with TNF-α or LPS alone led to an increase in MCP-1 and MIP-2 mRNA. The combination of cristobalite plus TNF-α led to an additive increase in MCP-1 and MIP-2, whereas cristobalite plus IFN-γ or LPS had a synergistic effect. We also found with a TNF-α-neutralizing antibody that TNF-α plays a major role in mediating the type II cell chemokine response to cristobalite exposure. The results indicate that the cristobalite-induced chemokine response in the lung epithelium is mediated in part by TNF-α and can be enhanced by macrophage- and lymphocyte-derived inflammatory mediators in an additive and synergistic fashion.


1999 ◽  
Vol 17 (6) ◽  
pp. 836-842 ◽  
Author(s):  
Paula M. Ragan ◽  
Alison M. Badger ◽  
Michael Cook ◽  
Vicki I. Chin ◽  
Maxine Gowen ◽  
...  

1987 ◽  
Vol 84 (9) ◽  
pp. 2803-2807 ◽  
Author(s):  
R. H. Lovell-Badge ◽  
A. Bygrave ◽  
A. Bradley ◽  
E. Robertson ◽  
R. Tilly ◽  
...  

2019 ◽  
Vol 11 (511) ◽  
pp. eaav7561 ◽  
Author(s):  
Shuai Shao ◽  
Lam C. Tsoi ◽  
Mrinal K. Sarkar ◽  
Xianying Xing ◽  
Ke Xue ◽  
...  

Lichen planus (LP) is a chronic debilitating inflammatory disease of unknown etiology affecting the skin, nails, and mucosa with no current FDA-approved treatments. It is histologically characterized by dense infiltration of T cells and epidermal keratinocyte apoptosis. Using global transcriptomic profiling of patient skin samples, we demonstrate that LP is characterized by a type II interferon (IFN) inflammatory response. The type II IFN, IFN-γ, is demonstrated to prime keratinocytes and increase their susceptibility to CD8+ T cell–mediated cytotoxic responses through MHC class I induction in a coculture model. We show that this process is dependent on Janus kinase 2 (JAK2) and signal transducer and activator of transcription 1 (STAT1), but not JAK1 or STAT2 signaling. Last, using drug prediction algorithms, we identify JAK inhibitors as promising therapeutic agents in LP and demonstrate that the JAK1/2 inhibitor baricitinib fully protects keratinocytes against cell-mediated cytotoxic responses in vitro. In summary, this work elucidates the role and mechanisms of IFN-γ in LP pathogenesis and provides evidence for the therapeutic use of JAK inhibitors to limit cell-mediated cytotoxicity in patients with LP.


1988 ◽  
Vol 8 (4) ◽  
pp. 277-294 ◽  
Author(s):  
Hyun-Duck Nah ◽  
Barbara J. Rodgers ◽  
William M. Kulyk ◽  
Barbara E. Kream ◽  
Robert A. Kosher ◽  
...  

2000 ◽  
Vol 8 (4) ◽  
pp. 248-257 ◽  
Author(s):  
A.-M.K Säämänen ◽  
H.J Salminen ◽  
P.B Dean ◽  
B De Crombrugghe ◽  
E.I Vuorio ◽  
...  

1994 ◽  
Vol 158 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Douglass M. Bradham ◽  
Beatrix In Der Wiesche ◽  
Patricia Precht ◽  
Richard Balakir ◽  
Walter Horton

2008 ◽  
Vol 215 (2) ◽  
pp. 562-573 ◽  
Author(s):  
Haibing Peng ◽  
Lujian Tan ◽  
Makoto Osaki ◽  
Yumei Zhan ◽  
Kosei Ijiri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document