scholarly journals Transcriptional regulation of human mucin MUC4 by bile acids in oesophageal cancer cells is promoter-dependent and involves activation of the phosphatidylinositol 3-kinase signalling pathway

2004 ◽  
Vol 377 (3) ◽  
pp. 701-708 ◽  
Author(s):  
Christophe MARIETTE ◽  
Michaël PERRAIS ◽  
Emmanuelle LETEURTRE ◽  
Nicolas JONCKHEERE ◽  
Brigitte HÉMON ◽  
...  

Abnormal gastro-oesophageal reflux and bile acids have been linked to the presence of Barrett's oesophageal premalignant lesion associated with an increase in mucin-producing goblet cells and MUC4 mucin gene overexpression. However, the molecular mechanisms underlying the regulation of MUC4 by bile acids are unknown. Since total bile is a complex mixture, we undertook to identify which bile acids are responsible for MUC4 up-regulation by using a wide panel of bile acids and their conjugates. MUC4 apomucin expression was studied by immunohistochemistry both in patient biopsies and OE33 oesophageal cancer cell line. MUC4 mRNA levels and promoter regulation were studied by reverse transcriptase–PCR and transient transfection assays respectively. We show that among the bile acids tested, taurocholic, taurodeoxycholic, taurochenodeoxycholic and glycocholic acids and sodium glycocholate are strong activators of MUC4 expression and that this regulation occurs at the transcriptional level. By using specific pharmacological inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase A and protein kinase C, we demonstrate that bile acid-mediated up-regulation of MUC4 is promoter-specific and mainly involves activation of phosphatidylinositol 3-kinase. This new mechanism of regulation of MUC4 mucin gene points out an important role for bile acids as key molecules in targeting MUC4 overexpression in early stages of oesophageal carcinogenesis.

2001 ◽  
Vol 356 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Kathryn M. SCHUBERT ◽  
Vincent DURONIO

Alterations in the expression of various Bcl-2 family members may act as one means by which a cell's survival may be regulated. The mechanism by which cytokines regulate expression of Bcl-2 family members was examined in the haemopoietic cell line TF-1. Cytokine-induced Mcl-1 protein expression was shown to be controlled through a pathway dependent upon phosphatidylinositol 3-kinase (PI 3-kinase). The cytokine-induced increase in mRNA transcription was not dependent upon PI 3-kinase, thus dissociating the immediate-early transcription factors responsible for Mcl-1 transcription from the PI 3-kinase signalling pathway. In contrast, Mcl-1 mRNA levels were dependent upon MEK [mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated protein kinase kinase] activation, suggesting a role for the Ras/MEK/MAPK pathway in Mcl-1 transcription. Activation of PI 3-kinase was shown to be necessary to stimulate Mcl-1 protein translation. This was not due to any effect on prolonging the half-life of the protein. Finally, the lipid second messenger ceramide was shown to cause a reduction in Mcl-1 protein translation, probably via its ability to inhibit protein kinase B activation, providing further clues regarding the death-inducing effect of this lipid.


1998 ◽  
Vol 331 (2) ◽  
pp. 591-597 ◽  
Author(s):  
Whaseon LEE-KWON ◽  
Deokbae PARK ◽  
Michel BERNIER

Expression of DNA repair enzymes, which includes ERCC-1, might be under the control of hormonal and growth factor stimulation. In the present study it was observed that insulin increased ERCC-1 mRNA levels both in Chinese hamster ovary cells overexpressing human insulin receptors (HIRc cells) and in fully differentiated 3T3-L1 adipocytes. To investigate the mechanisms underlying the increase in ERCC-1 gene expression in HIRc cells, we used a variety of pharmacological tools known to inhibit distinct signalling pathways. None of these inhibitors affected the amount of ERCC-1 mRNA in unstimulated cells. The pretreatment of cells with two chemically unrelated phosphatidylinositol 3´-kinase inhibitors, wortmannin and LY294002, failed to block the doubling of ERCC-1 mRNA content by insulin. Similarly, inhibition of pp70 S6 kinase by rapamycin had no apparent effects on this insulin response. In contrast, altering the p21ras-dependent pathway with either manumycin, an inhibitor of Ras farnesylation, or PD98059, an inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase, suppressed the induction of ERCC-1 mRNA by insulin (P< 0.001). Furthermore inhibition of RNA and protein synthesis negatively regulated the expression of this insulin-regulated gene (P< 0.005). These results suggest that insulin enhances ERCC-1 mRNA levels by the activation of the Ras–ERK-dependent pathway without the involvement of the phosphatidylinositol 3´-kinase/pp70 S6 kinase.


1993 ◽  
Vol 70 (05) ◽  
pp. 800-806 ◽  
Author(s):  
C Ternisien ◽  
M Ramani ◽  
V Ollivier ◽  
F Khechai ◽  
T Vu ◽  
...  

SummaryTissue factor (TF) is a transmembrane receptor which, in association with factors VII and Vila, activates factor IX and X, thereby activating the coagulation protease cascades. In response to bacterial lipopolysaccharide (LPS) monocytes transcribe, synthesize and express TF on their surface. We investigated whether LPS-induced TF in human monocytes is mediated by protein kinase C (PKC) activation. The PKC agonists phorbol 12- myristate 13-acetate (PMA) and phorbol 12, 13 dibutyrate (PdBu) were both potent inducers of TF in human monocytes, whereas 4 alpha-12, 13 didecanoate (4 a-Pdd) had no such effect. Both LPS- and PMA-induced TF activity were inhibited, in a concentration dependent manner, by three different PKC inhibitors: H7, staurosporine and calphostin C. TF antigen determination confirmed that LPS-induced cell-surface TF protein levels decreased in parallel to TF functional activity under staurosporine treatment. Moreover, Northern blot analysis of total RNA from LPS- or PMA-stimulated monocytes showed a concentration-dependent decrease in TF mRNA levels in response to H7 and staurosporine. The decay rate of LPS-induced TF mRNA evaluated after the arrest of transcription by actinomycin D was not affected by the addition of staurosporine, suggesting that its inhibitory effect occurred at a transcriptional level. We conclude that LPS-induced production of TF and its mRNA by human monocytes are dependent on PKC activation.


Reproduction ◽  
2010 ◽  
Vol 140 (1) ◽  
pp. 43-56 ◽  
Author(s):  
T Rotman ◽  
N Etkovitz ◽  
A Spiegel ◽  
S Rubinstein ◽  
H Breitbart

In order to acquire fertilization competence, spermatozoa have to undergo biochemical changes in the female reproductive tract, known as capacitation. Signaling pathways that take place during the capacitation process are much investigated issue. However, the role and regulation of phosphatidylinositol 3-kinase (PI3K) in this process are still not clear. Previously, we reported that short-time activation of protein kinase A (PRKA, PKA) leads to PI3K activation and protein kinase Cα (PRKCA, PKCα) inhibition. In the present study, we found that during the capacitation PI3K phosphorylation/activation increases. PI3K activation was PRKA dependent, and down-regulated by PRKCA. PRKCA is found to be highly active at the beginning of the capacitation, conditions in which PI3K is not active. Moreover, inhibition of PRKCA causes significant activation of PI3K. Similar activation of PI3K is seen when the phosphatase PPP1 is blocked suggesting that PPP1 regulates PI3K activity. We found that during the capacitation PRKCA and PPP1CC2 (PP1γ2) form a complex, and the two enzymes were degraded during the capacitation, suggesting that this degradation enables the activation of PI3K. This degradation is mediated by PRKA, indicating that in addition to the direct activation of PI3K by PRKA, this kinase can enhance PI3K phosphorylation indirectly by enhancing the degradation and inactivation of PRKCA and PPP1CC2.


Sign in / Sign up

Export Citation Format

Share Document