scholarly journals Substitutions in hamster CAD carbamoyl-phosphate synthetase alter allosteric response to 5-phosphoribosyl-alpha-pyrophosphate (PRPP) and UTP

2004 ◽  
Vol 378 (3) ◽  
pp. 991-998 ◽  
Author(s):  
Christine Q. SIMMONS ◽  
Alan J. SIMMONS ◽  
Aaron HAUBNER ◽  
Amber REAM ◽  
Jeffrey N. DAVIDSON

CPSase (carbamoyl-phosphate synthetase II), a component of CAD protein (multienzymic protein with CPSase, aspartate transcarbamylase and dihydro-orotase activities), catalyses the regulated steps in the de novo synthesis of pyrimidines. Unlike the orthologous Escherichia coli enzyme that is regulated by UMP, inosine monophosphate and ornithine, the mammalian CPSase is allosterically inhibited by UTP, and activated by PRPP (5-phosphoribosyl-α-pyrophosphate) and phosphorylation. Four residues (Thr974, Lys993, Lys954 and Thr977) are critical to the E. coli inosine monophosphate/UMP-binding pocket. In the present study, three of the corresponding residues in the hamster CPSase were altered to determine if they affect either PRPP activation or UTP inhibition. Substitution of the hamster residue, positionally equivalent to Thr974 in the E. coli enzyme, with alanine residue led to an enzyme with 5-fold lower activity and a near loss of PRPP activation. Whereas replacement of the tryptophan residue at position 993 had no effect, an Asp992→Asn substitution yielded a much-activated enzyme that behaved as if PRPP was present. The substitution Lys954→Glu had no effect on PRPP stimulation. Only modest decreases in UTP inhibitions were observed with each of the altered CPSases. The results also show that while PRPP and UTP can act simultaneously, PRPP activation is dominant. Apparently, UTP and PRPP have distinctly different associations within the mammalian enzyme. The findings of the present study may prove relevant to the neuropathology of Lesch–Nyhan syndrome.

1987 ◽  
Vol 7 (5) ◽  
pp. 1961-1966
Author(s):  
G N Rao ◽  
E S Buford ◽  
J N Davidson

CAD codes for a trifunctional protein involved in the catalysis of the first three enzymatic activities in the de novo pyrimidine biosynthetic pathway, namely, carbamoyl-phosphate synthetase II (EC 6.3.5.5), aspartate transcarbamylase (EC 2.1.3.2), and dihydroorotase (EC 3.5.2.3). CAD regulation was studied in the human promyelocyte leukemic line HL-60 as it differentiated into monocytic or granulocytic lineages after induction by 12-O-tetradecanoylphorbol-13-acetate or trans-retinoic acid and dibutyryl cyclic AMP, respectively. Within 12 h of induction of HL-60 cells with either inducer, total cellular levels of CAD RNA essentially disappeared. On the other hand, no apparent decreases in beta-actin RNA levels were seen even 48 h after HL-60 cells were induced, as compared with untreated cells. With nuclear runoff assays, it was clearly shown that the inactivation of CAD gene expression during the induction of HL-60 cells with either inducer was at the transcriptional level. The nuclear runoff experiments also demonstrated that the CAD gene expression was shut down in less than 4 h after induction, well before morphological changes were observed in these cells. At the enzymatic level, the activity of aspartate transcarbamylase, one of the three enzymes encoded by the CAD gene, decreased by about half within 24 h of induction, suggesting a CAD protein half-life of 24 h in differentiating HL-60 cells. Nevertheless, this means that significant levels of aspartate transcarbamylase activity remained even after the cells have stopped proliferating. From the RNA data, it is clear that CAD gene expression is rapidly turned off as promyelocytes begin to terminally differentiate into macrophages and granulocytes. We suspect that the inactivation of the CAD gene in induced HL-60 cells is a consequence of the differentiating cells leaving the cell cycle and becoming nonproliferating.


1985 ◽  
Vol 5 (7) ◽  
pp. 1735-1742
Author(s):  
K Shigesada ◽  
G R Stark ◽  
J A Maley ◽  
L A Niswander ◽  
J N Davidson

cDNA complementary to hamster mRNA encoding the CAD protein, a multifunctional protein which carries the first three enzymes of pyrimidine biosynthesis, was constructed. The longest of these recombinants (pCAD142) covers 82% of the 7.9-kilobase mRNA. Portions of the cDNA were excised and replaced by a lac promoter-operator-initiation codon segment. The resultant plasmids were transfected into an Escherichia coli mutant defective in aspartate transcarbamylase, the second enzyme of the pathway. Complementation of the bacterial defect was observed with as little as 2.2 kilobases of cDNA sequence, corresponding to the 3' region of the mRNA. DNA sequencing in this region of the hamster cDNA reveals stretches which are highly homologous to the E. coli gene for the catalytic subunit of aspartate transcarbamylase; other stretches show no homology. The highly conserved regions probably reflect areas of protein structure critical to catalysis, while the nonconserved regions may reflect differences between the quaternary structures of E. coli and mammalian aspartate transcarbamylases, one such difference being that the bacterial enzyme in its native form is allosterically regulated and the mammalian enzyme is not.


1987 ◽  
Vol 7 (5) ◽  
pp. 1961-1966 ◽  
Author(s):  
G N Rao ◽  
E S Buford ◽  
J N Davidson

CAD codes for a trifunctional protein involved in the catalysis of the first three enzymatic activities in the de novo pyrimidine biosynthetic pathway, namely, carbamoyl-phosphate synthetase II (EC 6.3.5.5), aspartate transcarbamylase (EC 2.1.3.2), and dihydroorotase (EC 3.5.2.3). CAD regulation was studied in the human promyelocyte leukemic line HL-60 as it differentiated into monocytic or granulocytic lineages after induction by 12-O-tetradecanoylphorbol-13-acetate or trans-retinoic acid and dibutyryl cyclic AMP, respectively. Within 12 h of induction of HL-60 cells with either inducer, total cellular levels of CAD RNA essentially disappeared. On the other hand, no apparent decreases in beta-actin RNA levels were seen even 48 h after HL-60 cells were induced, as compared with untreated cells. With nuclear runoff assays, it was clearly shown that the inactivation of CAD gene expression during the induction of HL-60 cells with either inducer was at the transcriptional level. The nuclear runoff experiments also demonstrated that the CAD gene expression was shut down in less than 4 h after induction, well before morphological changes were observed in these cells. At the enzymatic level, the activity of aspartate transcarbamylase, one of the three enzymes encoded by the CAD gene, decreased by about half within 24 h of induction, suggesting a CAD protein half-life of 24 h in differentiating HL-60 cells. Nevertheless, this means that significant levels of aspartate transcarbamylase activity remained even after the cells have stopped proliferating. From the RNA data, it is clear that CAD gene expression is rapidly turned off as promyelocytes begin to terminally differentiate into macrophages and granulocytes. We suspect that the inactivation of the CAD gene in induced HL-60 cells is a consequence of the differentiating cells leaving the cell cycle and becoming nonproliferating.


1985 ◽  
Vol 5 (7) ◽  
pp. 1735-1742 ◽  
Author(s):  
K Shigesada ◽  
G R Stark ◽  
J A Maley ◽  
L A Niswander ◽  
J N Davidson

cDNA complementary to hamster mRNA encoding the CAD protein, a multifunctional protein which carries the first three enzymes of pyrimidine biosynthesis, was constructed. The longest of these recombinants (pCAD142) covers 82% of the 7.9-kilobase mRNA. Portions of the cDNA were excised and replaced by a lac promoter-operator-initiation codon segment. The resultant plasmids were transfected into an Escherichia coli mutant defective in aspartate transcarbamylase, the second enzyme of the pathway. Complementation of the bacterial defect was observed with as little as 2.2 kilobases of cDNA sequence, corresponding to the 3' region of the mRNA. DNA sequencing in this region of the hamster cDNA reveals stretches which are highly homologous to the E. coli gene for the catalytic subunit of aspartate transcarbamylase; other stretches show no homology. The highly conserved regions probably reflect areas of protein structure critical to catalysis, while the nonconserved regions may reflect differences between the quaternary structures of E. coli and mammalian aspartate transcarbamylases, one such difference being that the bacterial enzyme in its native form is allosterically regulated and the mammalian enzyme is not.


2013 ◽  
Vol 59 (6) ◽  
pp. 374-379 ◽  
Author(s):  
Haitian Fang ◽  
Huiyan Liu ◽  
Ning Chen ◽  
Chenglin Zhang ◽  
Xixian Xie ◽  
...  

A major problem when pyrimidine de novo biosynthesis is used for cytidine production is the existence of many negative regulatory factors. Cytidine biosynthesis in Bacillus amyloliquefaciens proceeds via a pathway that is controlled by uridine monophosphate (UMP) through feedback inhibition of carbamoyl phosphate synthetase (CPS), the enzyme that converts CO2, NH3, and glutamine to carbamoyl phosphate. In this study, the gene carB encoding the large subunit of CPS from B. amyloliquefaciens CYT1 was site directed, and the UMP binding sites of feedback inhibition in Bam-CPS are described. The residues Thr-941, Thr-970, and Lys-986 in CPS from B. amyloliquefaciens were subjected to site-directed mutagenesis to alter UMP’s feedback inhibition of CPS. To find feedback-resistant B. amyloliquefaciens, the influence of the T941F, T970A, K986I, T941F/K986I, and T941F/T970A/K986I mutations on CPS enzymatic properties was studied. The recombinant B. amyloliquefaciens with mutated T941F/K986I and T941F/T970A/K986I CPS showed a 3.7- and 5.7-fold increase, respectively, in cytidine production in comparison with the control expressing wild-type CPS, which was more suitable for further application of the cytidine synthesis. To a certain extent, the 5 mutations were found to release the enzyme from UMP inhibition and to improve B. amyloliquefaciens cytidine-producing strains.


2014 ◽  
Vol 244 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Baptiste Coxam ◽  
Christine Neyt ◽  
Daniela R. Grassini ◽  
Ludovic Le Guen ◽  
Kelly A. Smith ◽  
...  

2019 ◽  
Vol 11 (504) ◽  
pp. eaau4972 ◽  
Author(s):  
Xiuxing Wang ◽  
Kailin Yang ◽  
Qiulian Wu ◽  
Leo J. Y. Kim ◽  
Andrew R. Morton ◽  
...  

Glioblastoma stem cells (GSCs) reprogram glucose metabolism by hijacking high-affinity glucose uptake to survive in a nutritionally dynamic microenvironment. Here, we trace metabolic aberrations in GSCs to link core genetic mutations in glioblastoma to dependency on de novo pyrimidine synthesis. Targeting the pyrimidine synthetic rate-limiting step enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase (CAD) or the critical downstream enzyme dihydroorotate dehydrogenase (DHODH) inhibited GSC survival, self-renewal, and in vivo tumor initiation through the depletion of the pyrimidine nucleotide supply in rodent models. Mutations in EGFR or PTEN generated distinct CAD phosphorylation patterns to activate carbon influx through pyrimidine synthesis. Simultaneous abrogation of tumor-specific driver mutations and DHODH activity with clinically approved inhibitors demonstrated sustained inhibition of metabolic activity of pyrimidine synthesis and GSC tumorigenic capacity in vitro. Higher expression of pyrimidine synthesis genes portends poor prognosis of patients with glioblastoma. Collectively, our results demonstrate a therapeutic approach of precision medicine through targeting the nexus between driver mutations and metabolic reprogramming in cancer stem cells.


1998 ◽  
Vol 329 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Yu QIU ◽  
N. Jeffrey DAVIDSON

Residues Asp-90 and Arg-269 of Escherichia coli aspartate transcarbamylase seem to interact at the interface of adjacent catalytic subunits. Alanine substitutions at the analogous positions in the hamster aspartate transcarbamylase of a chimaeric protein carrying an E. coli maltose-binding domain lead to changes in both the kinetics of the enzyme and the quaternary structure of the protein. The Vmax for the Asp-90 → Ala and Arg-269 → Ala substitutions is decreased to 1/21 and 1/50 respectively, the [S]0.5 for aspartate is increased 540-fold and 826-fold respectively, and the [S]0.5 for carbamoyl phosphate is increased 60-fold for both. These substitutions decrease the oligomeric size of the protein. Whereas the native chimaeric protein behaves as a pentamer, the Asp-90 variant is a trimer and the Arg-269 variant is a dimer. The altered enzymes also exhibit marked decreases in thermal stability and are inactivated at much lower concentrations of urea than is the unaltered enzyme. Taken together, these results are consistent with the hypothesis that both Asp-90 and Arg-269 have a role in the enzymic function and structural integrity of hamster aspartate transcarbamylase.


Sign in / Sign up

Export Citation Format

Share Document