A Common Regulatory Signature Associated with Barrier Insulators in Human Primary Erythroid Cells

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3868-3868
Author(s):  
Laurie A. Steiner ◽  
Yelena Maksimova ◽  
Vincent Schulz ◽  
Patrick G. Gallagher

Abstract Abstract 3868 Insulators are DNA sequences and associated binding proteins that establish and/or maintain boundaries between regions of active and silenced chromatin domains. In higher organisms, there are 2 types of insulators, enhancer-blocking insulators, which establish chromatin domains to separate enhancers and promoters, and barrier insulators, which create a barrier to protect against heterochromatin-mediated gene silencing. Despite their role as critical regulators of tissue-specific gene expression, barrier insulators are poorly understood in mammalian cells, with much of our knowledge from studies of the barrier insulator in the chicken β-globin locus, cHS4. The DNA region of cHS4 that functions as a barrier binds upstream stimulatory factor (USF) proteins that recruit histone methyltransferase (HMT) activity, and histone acetyltransferase (HAT) activity, supporting a model that recruitment of enzymes and other proteins associated with activating histone modifications block the mechanism(s) that lead to spreading of gene-silencing. Our goal is to identify a regulatory signature associated with barrier insulators in erythroid cells. We utilized chromatin immunoprecipitation coupled with ultrahigh throughput Solexa sequencing (ChIP-seq) to generate genome-wide maps of regulatory and chromatin modifying proteins in erythroid cells. To generate cells for ChIP, human CD34+ cells were cultured in serum free media with erythropoietin to yield a population of CD71+/GPA+ erythroid cells (R3/R4 population). First, a genome-wide map of USF1 and USF2 occupancy in primary erythroid cells was created. A total of 19213 USF1 and 20115 USF2 sites of occupancy were identified. USF1 and USF2 frequently heterodimerize; co-localization was present at 15882 sites (83% of USF1 and 79% of USF2 sites). USF heterodimers were commonly located near proximal promoters (within 1KB of TSS, 48% of sites) and enhancers (>1kb from RefSeq gene, 30% of sites). To analyze co-localizing barrier-associated arginine methyltransferases from erythroid cells, ChIP-seq was performed with PRMT1 and PRMT4/CARM1. A total of 7062 PRMT1 sites and 15900 PRMT4 sites were identified. PRMT1 and PRMT4 were commonly found at sites of USF occupancy, with 6120 sites demonstrating occupancy of all four factors, consistent with the hypothesis that the USF proteins frequently recruit HMT's in mammalian cells. Sites of PRMT/USF co-occupancy were more likely to be at proximal promoters (68%) than sites of USF occupancy alone. Genome-wide occupancy of four acetyltransferases commonly found in erythroid cells, CBP, p300, PCAF, and SRC1, was also studied using ChIP-seq. 6804, 46932, 25688, and 25833 sites of occupancy were found for CBP, p300, PCAF, and SRC1 respectively. Co-localization with the p300, PCAF, and SRC1 with the USF/PRMT binding sites was common, occurring in 3825 sites. These sites were most commonly located near proximal promoters (71%) and enhancers (17%). In contrast, CBP co-localized with the USF/PRMT/p300/PCAF/SRC regions in only 10 locations and sites of CBP occupancy were more commonly found at enhancers (64%) and introns (29%) than at promoters (0.4%). Detection of barrier insulators near gene promoters is not surprising. Recent studies have revealed many similarities between barriers and promoters, including binding of specific transcription factors, and have led to the suggestion that barrier insulators have evolved as specialized derivatives of gene promoters, each with specific, yet discrete function. The regulatory protein CTCF mediates enhancer-blocking insulator activity. ChIP-seq was utilized to create a genome-wide map of CTCF binding in erythroid cells. 38503 sites of CTCF occupancy were identified. These sites were located at enhancers (41%), introns, (28%) and proximal promoters (18%). 4459 CTCF sites (12%) co-localized with regions of USF/PRMT/p300/PCAF/SRC binding. These sites most commonly occurred at promoters (65%) and enhancers (19%). The role of CTCF in barrier insulator function is controversial; our data are consistent with recent data demonstrating its mark at chromatin boundaries. The signature composed of USF/PRMT/p300/PCAF/SRC/CTCF was found in the well characterized functional erythroid barrier located in the ankyrin-1 gene proximal promoter region. These data indicate that a common regulatory signature is likely associated with barrier elements in erythroid cells. Disclosures: No relevant conflicts of interest to declare.

2022 ◽  
Vol 12 ◽  
Author(s):  
Inge Holm ◽  
Luisa Nardini ◽  
Adrien Pain ◽  
Emmanuel Bischoff ◽  
Cameron E. Anderson ◽  
...  

Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences.Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.


2013 ◽  
Author(s):  
Benjamin P. Berman ◽  
Yaping Liu ◽  
Theresa K. Kelly

Background: Nucleosome organization and DNA methylation are two mechanisms that are important for proper control of mammalian transcription, as well as epigenetic dysregulation associated with cancer. Whole-genome DNA methylation sequencing studies have found that methylation levels in the human genome show periodicities of approximately 190 bp, suggesting a genome-wide relationship between the two marks. A recent report (Chodavarapu et al., 2010) attributed this to higher methylation levels of DNA within nucleosomes. Here, we analyzed a number of published datasets and found a more compelling alternative explanation, namely that methylation levels are highest in linker regions between nucleosomes. Results: Reanalyzing the data from (Chodavarapu et al., 2010), we found that nucleosome-associated methylation could be strongly confounded by known sequence-related biases of the next-generation sequencing technologies. By accounting for these biases and using an unrelated nucleosome profiling technology, NOMe-seq, we found that genome-wide methylation was actually highest within linker regions occurring between nucleosomes in multi-nucleosome arrays. This effect was consistent among several methylation datasets generated independently using two unrelated methylation assays. Linker-associated methylation was most prominent within long Partially Methylated Domains (PMDs) and the positioned nucleosomes that flank CTCF binding sites. CTCF adjacent nucleosomes retained the correct positioning in regions completely devoid of CpG dinucleotides, suggesting that DNA methylation is not required for proper nucleosomes positioning. Conclusions: The biological mechanisms responsible for DNA methylation patterns outside of gene promoters remain poorly understood. We identified a significant genome-wide relationship between nucleosome organization and DNA methylation, which can be used to more accurately analyze and understand the epigenetic changes that accompany cancer and other diseases.


2016 ◽  
Vol 397 (7) ◽  
pp. 637-647 ◽  
Author(s):  
Tao Tan ◽  
Marcel Zimmermann ◽  
Andreas S. Reichert

Abstract Mitophagy is a selective autophagy pathway conserved in eukaryotes and plays an essential role in mitochondrial quality and quantity control. Mitochondrial fission and fusion cycles maintain a certain amount of healthy mitochondria and allow the isolation of damaged mitochondria for their elimination by mitophagy. Mitophagy can be classified into receptor-dependent and ubiquitin-dependent pathways. The mitochondrial outer membrane protein Atg32 is identified as the only known receptor for mitophagy in baker’s yeast, whereas mitochondrial proteins FUNDC1, NIX/BNIP3L, BNIP3 and Bcl2L13 are recognized as mitophagy receptors in mammalian cells. Earlier studies showed that ubiquitination and deubiquitination occurs in yeast, yet there is no direct evidence for an ubiquitin-dependent mitophagy pathway in this organism. In contrast, a ubiquitin-/PINK1-/Parkin-dependent mitophagy pathway was unraveled and was extensively characterized in mammals in recent years. Recently, a quantitative method termed synthetic quantitative array (SQA) technology was developed to identify modulators of mitophagy in baker’s yeast on a genome-wide level. The Ubp3-Bre5 deubiquitination complex was found as a negative regulator of mitophagy while promoting other autophagic pathways. Here we discuss how ubiquitination and deubiquitination regulates mitophagy and other selective forms of autophagy and what argues for using baker’s yeast as a model to study the ubiquitin-dependent mitophagy pathway.


2019 ◽  
Vol 218 (10) ◽  
pp. 3336-3354 ◽  
Author(s):  
Yoshinori Takahashi ◽  
Xinwen Liang ◽  
Tatsuya Hattori ◽  
Zhenyuan Tang ◽  
Haiyan He ◽  
...  

The process of phagophore closure requires the endosomal sorting complex required for transport III (ESCRT-III) subunit CHMP2A and the AAA ATPase VPS4, but their regulatory mechanisms remain unknown. Here, we establish a FACS-based HaloTag-LC3 autophagosome completion assay to screen a genome-wide CRISPR library and identify the ESCRT-I subunit VPS37A as a critical component for phagophore closure. VPS37A localizes on the phagophore through the N-terminal putative ubiquitin E2 variant domain, which is found to be required for autophagosome completion but dispensable for ESCRT-I complex formation and the degradation of epidermal growth factor receptor in the multivesicular body pathway. Notably, loss of VPS37A abrogates the phagophore recruitment of the ESCRT-I subunit VPS28 and CHMP2A, whereas inhibition of membrane closure by CHMP2A depletion or VPS4 inhibition accumulates VPS37A on the phagophore. These observations suggest that VPS37A coordinates the recruitment of a unique set of ESCRT machinery components for phagophore closure in mammalian cells.


2004 ◽  
Vol 380 (3) ◽  
pp. 593-603 ◽  
Author(s):  
René H. MEDEMA

Over the last 2 years, the scientific community has rapidly embraced novel technologies that allow gene silencing in vertebrates. Ease of application, cost effectiveness and the possibilities for genome-wide reverse genetics have quickly turned this approach into a widely accepted, almost mandatory asset for a self-respecting laboratory in life sciences. This review discusses some of the recent technological developments that allow the application of RNAi (RNA interference) in mammalian cells. In addition, the advantages of applying RNAi to study cell cycle events and the emerging approaches to perform mutational analysis by complementation in mammalian cells are evaluated. In addition, common pitfalls and drawbacks of RNAi will be reviewed, as well as the possible ways to get around these shortcomings of gene silencing by small interfering RNA.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Joel M Swenson ◽  
Serafin U Colmenares ◽  
Amy R Strom ◽  
Sylvain V Costes ◽  
Gary H Karpen

Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.


Science ◽  
2008 ◽  
Vol 322 (5909) ◽  
pp. 1855-1857 ◽  
Author(s):  
Yiping He ◽  
Bert Vogelstein ◽  
Victor E. Velculescu ◽  
Nickolas Papadopoulos ◽  
Kenneth W. Kinzler

Transcription in mammalian cells can be assessed at a genome-wide level, but it has been difficult to reliably determine whether individual transcripts are derived from the plus or minus strands of chromosomes. This distinction can be critical for understanding the relationship between known transcripts (sense) and the complementary antisense transcripts that may regulate them. Here, we describe a technique that can be used to (i) identify the DNA strand of origin for any particular RNA transcript, and (ii) quantify the number of sense and antisense transcripts from expressed genes at a global level. We examined five different human cell types and in each case found evidence for antisense transcripts in 2900 to 6400 human genes. The distribution of antisense transcripts was distinct from that of sense transcripts, was nonrandom across the genome, and differed among cell types. Antisense transcripts thus appear to be a pervasive feature of human cells, which suggests that they are a fundamental component of gene regulation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 283-283
Author(s):  
Andre M. Pilon ◽  
Elliott H. Margulies ◽  
Hatice Ozel Abaan ◽  
Amy Werner- Allen ◽  
Tim M. Townes ◽  
...  

Abstract Erythroid Kruppel-Like Factor (EKLF; KLF1) is the founding member of the Kruppel family of transcription factors, with 3 C2H2 zinc-fingers that bind a 9-base consensus sequence (NCNCNCCCN). The functions of EKLF, first identified as an activator of the beta-globin locus, include gene activation and chromatin remodeling. Our knowledge of genes regulated by EKLF is limited, as EKLF-deficient mice die by embryonic day 15 (E15), due to a severe anemia. Analysis of E13.5 wild type and EKLF-deficient fetal liver (FL) erythroid cells revealed that EKLF-deficient cells fail to complete terminal erythroid maturation (Pilon et al. submitted). Coupling chromatin immunoprecipitation and ultra high-throughput massively parallel sequencing (ChIP-seq) is increasingly being used for mapping protein-DNA interactions in vivo on a genome-wide scale. ChIP-seq allows a simultaneous analysis of transcription factor binding in every region of the genome, defining an “interactome”. To elucidate direct EKLF-dependent effects on erythropoiesis, we have combined ChIP-seq with expression array (“transcriptome”) analyses. We feel that integration of ChIP-seq and microarray data can provide us detailed knowledge of the role of EKLF in erythropoiesis. Chromatin was isolated from E13.5 FL cells of mice whose endogenous EKLF gene was replaced with a fully functional HA-tagged EKLF gene. ChIP was performed using a highly specific high affinity anti-HA antibody. A library of EKLF-bound FL chromatin enriched by anti-HA IP was created and subjected to fluorescent in situ sequencing on a Solexa 1G platform, providing 36-base signatures that were mapped to unique sites in the mouse genome, defining the EKLF “interactome.” The frequency with which a given signature appears provides a measurable peak of enrichment. We performed three biological/technical replicates and analyzed each data set individually as well as the combined data. To validate ChIP-seq results, we examined the locus of a known EKLF target gene, a-hemoglobin stabilizing protein (AHSP). Peaks corresponded to previously identified DNase hypersensitive sites, regions of histone hyperacetylation, and sites of promoter-occupancy determined by ChIP-PCR. A genome wide analysis, focusing on the regions with the highest EKLF occupancy revealed a set of 531 locations where high levels EKLF binding occurs. Of these sites, 119 (22%) are located 10 kb or more from the nearest gene and are classified as intergenic EKLF binding sites. Another 78 sites (14.6%) are within 10 kb of an annotated RefSeq gene. A plurality of the binding sites, 222 (42%), are within RefSeq coordinates and are classified as intragenic EKLF binding sites. Microarray profiling of mRNA from sorted, matched populations of dE13.5 WT and EKLF-deficient FL erythroid progenitor cells showed dysregulation of >3000 genes (p<0.05). Ingenuity Pathways Analysis (IPA) of the >3000 dysregulated mRNAs indicated significant alteration of a cell cycle-control network, centered about the transcription factor, E2f2. We confirmed significantly decreased E2f2 mRNA and protein levels by real-time PCR and Western blot, respectively; demonstrated that EKLF-deficient FL cells accumulate in G0/G1 by cell cycle analysis; and verified EKLF-binding to motifs within the E2f2 promoter by ChIP-PCR and analysis of the ChIP Seq data. We hypothesized that only a subset of the 3000 dysregulated genes would be direct EKLF targets. We limited the ChIP-seq library to display the top 5% most frequently represented fragments across the genome, and applied this criterion to the network of dysregulated mRNAs in the IPA cell cycle network. ChIP-seq identified peaks of EKLF association with 60% of the loci in this pathway. However, consistent with the role of EKLF as a transcriptional activator, 95% of the occupied genomic loci corresponded to mRNAs whose expression in EKLF-deficient FL cells was significantly decreased (p<0.05). The majority (59%) of these EKLF-bound sites were located at intragenic sites (i.e., introns), while a minority (15% and 26%) were found adjacent to the genes or in intergenic regions. We have shown that both the AHSP and E2f2 loci require EKLF to cause the locus to become activated and sensitive to DNase I digestion in erythroid cells. Based on the increased frequency of intragenic EKLF-binding sites, particularly in genes of the cell cycle network, we propose that the occupancy of intragenic sites by EKLF may facilitate chromatin modification.


2021 ◽  
Author(s):  
Uthra Gowthaman ◽  
Maxim Ivanov ◽  
Isabel Schwarz ◽  
Heta P. Patel ◽  
Niels A. Müller ◽  
...  

ABSTRACTNucleosome-depleted regions (NDRs) at gene promoters support initiation of RNA Polymerase II transcription. Interestingly, transcription often initiates in both directions, resulting in an mRNA, and a divergent non-coding (DNC) transcript with an unclear purpose. Here, we characterized the genetic architecture and molecular mechanism of DNC transcription in budding yeast. We identified the Hda1 histone deacetylase complex (Hda1C) as a repressor of DNC in high-throughput reverse genetic screens based on quantitative single-cell fluorescence measurements. Nascent transcription profiling showed a genome-wide role of Hda1C in DNC repression. Live-cell imaging of transcription revealed that Hda1C reduced the frequency of DNC transcription. Hda1C contributed to decreased acetylation of histone H3 in DNC regions, supporting DNC repression by histone deacetylation. Our data support the interpretation that DNC results as a consequence of the NDR-based architecture of eukaryotic promoters, but that it is governed by locus-specific repression to maintain genome fidelity.


Sign in / Sign up

Export Citation Format

Share Document