scholarly journals Glycoprotein VI/Fc receptor γ chain-independent tyrosine phosphorylation and activation of murine platelets by collagen

2004 ◽  
Vol 383 (3) ◽  
pp. 581-588 ◽  
Author(s):  
Gavin E. JARVIS ◽  
Denise BEST ◽  
Steve P. WATSON

We have investigated the ability of collagen to induce signalling and functional responses in suspensions of murine platelets deficient in the FcRγ (Fc receptor γ) chain, which lack the collagen receptor GPVI (glycoprotein VI). In the absence of the FcRγ chain, collagen induced a unique pattern of tyrosine phosphorylation which was potentiated by the thromboxane analogue U46619. Immunoprecipitation studies indicated that neither collagen alone nor the combination of collagen plus U46619 induced phosphorylation of the GPVI-regulated proteins Syk and SLP-76 (Src homology 2-containing leucocyte protein of 76 kDa). A low level of tyrosine phosphorylation of phospholipase Cγ2 was observed, which was increased in the presence of U46619, although the degree of phosphorylation remained well below that observed in wild-type platelets (∼10%). By contrast, collagen-induced phosphorylation of the adapter ADAP (adhesion- and degranulation-promoting adapter protein) was substantially potentiated by U46619 to levels equivalent to those observed in wild-type platelets. Collagen plus U46619 also induced significant phosphorylation of FAK (focal adhesion kinase). The functional significance of collagen-induced non-GPVI signals was highlighted by the ability of U46619 and collagen to induce the secretion of ATP in FcRγ chain-deficient platelets, even though neither agonist was effective alone. Protein tyrosine phosphorylation and the release of ATP were abolished by the anti-(α2 integrin) antibodies Ha1/29 and HMα2, but not by blockade of αIIbβ3. These results illustrate a novel mechanism of platelet activation by collagen which is independent of the GPVI–FcRγ chain complex, and is facilitated by binding of collagen to integrin α2β1.

1998 ◽  
Vol 188 (2) ◽  
pp. 267-276 ◽  
Author(s):  
Yasuharu Ezumi ◽  
Keisuke Shindoh ◽  
Masaaki Tsuji ◽  
Hiroshi Takayama

We have previously shown that uncharacterized glycoprotein VI (GPVI), which is constitutively associated and coexpressed with Fc receptor γ chain (FcRγ) in human platelets, is essential for collagen-stimulated tyrosine phosphorylation of FcRγ, Syk, and phospholipase Cγ2 (PLCγ2), leading to platelet activation. Here we investigated involvement of the Src family in the proximal signals through the GPVI–FcRγ complex, using the snake venom convulxin from Crotalus durissus terrificus, which specifically recognizes GPVI and activates platelets through cross-linking GPVI. Convulxin-coupled beads precipitated the GPVI–FcRγ complex from platelet lysates. Collagen and convulxin induced tyrosine phosphorylation of FcRγ, Syk, and PLCγ2 and recruited tyrosine-phosphorylated Syk to the GPVI–FcRγ complex. Using coprecipitation methods with convulxin-coupled beads and antibodies against FcRγ and the Src family, we showed that Fyn and Lyn, but not Yes, Src, Fgr, Hck, and Lck, were physically associated with the GPVI–FcRγ complex irrespective of stimulation. Furthermore, Fyn was rapidly activated by collagen or cross-linking GPVI. The Src family–specific inhibitor PP1 dose-dependently inhibited collagen- or convulxin-induced tyrosine phosphorylation of proteins including FcRγ, Syk, and PLCγ2, accompanied by a loss of aggregation and ATP release reaction. These results indicate that the Src family plays a critical role in platelet activation via the collagen receptor GPVI–FcRγ complex.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4246-4253 ◽  
Author(s):  
Lynn S. Quek ◽  
Jean-Max Pasquet ◽  
Ingeborg Hers ◽  
Richard Cornall ◽  
Graham Knight ◽  
...  

Abstract Activation of platelets by collagen is mediated by the complex glycoprotein VI (GPVI)/Fc receptor γ (FcRγ chain). In the current study, the role of 2 Src family kinases, Fyn and Lyn, in GPVI signaling has been examined using murine platelets deficient in one or both kinases. In the fyn−/−platelets, tyrosine phosphorylation of FcRγ chain, phopholipase C (PLC) activity, aggregation, and secretion are reduced, though the time of onset of response is unchanged. In the lyn−/−platelets, there is a delay of up to 30 seconds in the onset of tyrosine phosphorylation and functional responses, followed by recovery of phosphorylation and potentiation of aggregation and α-granule secretion. Tyrosine phosphorylation and aggregation in response to stimulation by collagen-related peptide is further attenuated and delayed in fyn−/−lyn−/−double-mutant platelets, and potentiation is not seen. This study provides the first genetic evidence that Fyn and Lyn mediate FcR immune receptor tyrosine-based activation motif phosphorylation and PLCγ2 activation after the ligation of GPVI. Lyn plays an additional role in inhibiting platelet activation through an uncharacterized inhibitory pathway.


2006 ◽  
Vol 281 (43) ◽  
pp. 32344-32352 ◽  
Author(s):  
Shumei Ren ◽  
Hideaki Higashi ◽  
Huaisheng Lu ◽  
Takeshi Azuma ◽  
Masanori Hatakeyama

Helicobacter pylori cagA-positive strains are associated with gastric adenocarcinoma. The cagA gene product CagA is delivered into gastric epithelial cells where it localizes to the plasma membrane and undergoes tyrosine phosphorylation at the EPIYA-repeat region, which contains the EPIYA-A segment, EPIYA-B segment, and Western CagA-specific EPIYA-C or East Asian CagA-specific EPIYA-D segment. In host cells, CagA specifically binds to and deregulates SHP-2 phosphatase via the tyrosine-phosphorylated EPIYA-C or EPIYA-D segment, thereby inducing an elongated cell shape known as the hummingbird phenotype. In this study, we found that CagA multimerizes in cells in a manner independent of its tyrosine phosphorylation. Using a series of CagA mutants, we identified a conserved amino acid sequence motif (FPLXRXXXVXDLSKVG), which mediates CagA multimerization, within the EPIYA-C segment as well as in a sequence that located immediately downstream of the EPIYA-C or EPIYA-D segment. We also found that a phosphorylation-resistant CagA, which multimerizes but cannot bind SHP-2, inhibits the wild-type CagA-SHP-2 complex formation and abolishes induction of the hummingbird phenotype. Thus, SHP-2 binds to a preformed and tyrosinephosphorylated CagA multimer via its two Src homology 2 domains. These results, in turn, indicate that CagA multimerization is a prerequisite for CagA-SHP-2 interaction and subsequent deregulation of SHP-2. The present work raises the possibility that inhibition of CagA multimerization abolishes pathophysiological activities of CagA that promote gastric carcinogenesis.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4246-4253 ◽  
Author(s):  
Lynn S. Quek ◽  
Jean-Max Pasquet ◽  
Ingeborg Hers ◽  
Richard Cornall ◽  
Graham Knight ◽  
...  

Activation of platelets by collagen is mediated by the complex glycoprotein VI (GPVI)/Fc receptor γ (FcRγ chain). In the current study, the role of 2 Src family kinases, Fyn and Lyn, in GPVI signaling has been examined using murine platelets deficient in one or both kinases. In the fyn−/−platelets, tyrosine phosphorylation of FcRγ chain, phopholipase C (PLC) activity, aggregation, and secretion are reduced, though the time of onset of response is unchanged. In the lyn−/−platelets, there is a delay of up to 30 seconds in the onset of tyrosine phosphorylation and functional responses, followed by recovery of phosphorylation and potentiation of aggregation and α-granule secretion. Tyrosine phosphorylation and aggregation in response to stimulation by collagen-related peptide is further attenuated and delayed in fyn−/−lyn−/−double-mutant platelets, and potentiation is not seen. This study provides the first genetic evidence that Fyn and Lyn mediate FcR immune receptor tyrosine-based activation motif phosphorylation and PLCγ2 activation after the ligation of GPVI. Lyn plays an additional role in inhibiting platelet activation through an uncharacterized inhibitory pathway.


Blood ◽  
2011 ◽  
Vol 117 (14) ◽  
pp. 3903-3906 ◽  
Author(s):  
Zhangyin Ming ◽  
Yu Hu ◽  
Jizhou Xiang ◽  
Peter Polewski ◽  
Peter J. Newman ◽  
...  

Abstract Inhibition of platelet responsiveness is important to control pathologic thrombus formation. Platelet–endothelial cell adhesion molecule-1 (PECAM-1) and the Src family kinase Lyn inhibit platelet activation by the glycoprotein VI (GPVI) collagen receptor; however, it is not known whether PECAM-1 and Lyn function in the same or different inhibitory pathways. In these studies, we found that, relative to wild-type platelets, platelets derived from PECAM-1–deficient, Lyn-deficient, or PECAM-1/Lyn double-deficient mice were equally hyperresponsive to stimulation with a GPVI-specific agonist, indicating that PECAM-1 and Lyn participate in the same inhibitory pathway. Lyn was required for PECAM-1 tyrosine phosphorylation and subsequent binding of the Src homology 2 domain–containing phosphatase-2, SHP-2. These results support a model in which PECAM-1/SHP-2 complexes, formed in a Lyn-dependent manner, suppress GPVI signaling.


2002 ◽  
Vol 364 (3) ◽  
pp. 755-765 ◽  
Author(s):  
Peter WONEROW ◽  
Achim OBERGFELL ◽  
Jonathan I. WILDE ◽  
Régis BOBE ◽  
Naoki ASAZUMA ◽  
...  

The platelet collagen receptor glycoprotein VI (GPVI) and the fibrinogen receptor integrin αIIbβ3 trigger intracellular signalling cascades involving the tyrosine kinase Syk, the adapter SLP-76 and phospholipase Cγ2 (PLCγ2). Similar pathways are activated downstream of immune receptors in lymphocytes, where they have been localized in part to glycolipid-enriched membrane domains (GEMs). Here we provide several lines of evidence that GPVI-mediated tyrosine phosphorylation of PLCγ2 in platelets is dependent on GEM-organized signalling and utilizes the GEM resident adapter protein LAT (linker for activation of T cells). In sharp contrast, although fibrinogen binding to platelets stimulates αIIbβ3-dependent activation of Syk and tyrosine phosphorylation of SLP-76 and PLCγ2, it does not utilize GEMs to promote these responses or to support platelet aggregation. These results establish that GPVI and αIIbβ3 trigger distinct patterns of receptor signalling in platelets, leading to tyrosine phosphorylation of PLCγ2, and they highlight the role of GEMs in compartmentalizing signalling reactions involved in haemostasis.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3250-3255 ◽  
Author(s):  
Yasuharu Ezumi ◽  
Kumi Kodama ◽  
Takashi Uchiyama ◽  
Hiroshi Takayama

Abstract The platelet collagen receptor glycoprotein (GP) VI–Fc receptor γ-chain (FcRγ) complex transduces signals in an immunoreceptorlike manner. We examined a role for the Triton X-100–insoluble membrane rafts in GPVI–FcRγ complex signaling. Methyl-β-cyclodextrin (MβCD)-induced disruption of the membrane rafts inhibited not only platelet aggregation and secretion but also tyrosine phosphorylation of signaling molecules on stimulation through the GPVI–FcRγ complex. The GPVI–FcRγ complex was constitutively associated with membrane rafts wherein the Src family kinases and LAT were also present. Their association was not affected by the complex engagement but was highly sensitive to MβCD treatment. Thus, we provide the first evidence that the GPVI–FcRγ complex is constitutively and functionally associated with membrane rafts.


FEBS Letters ◽  
1997 ◽  
Vol 413 (2) ◽  
pp. 255-259 ◽  
Author(s):  
Jonathan M Gibbins ◽  
Minoru Okuma ◽  
Richard Farndale ◽  
Michael Barnes ◽  
Stephen P Watson

2012 ◽  
Vol 23 (13) ◽  
pp. 2593-2604 ◽  
Author(s):  
Katsuhiro Kato ◽  
Tsubasa Yazawa ◽  
Kentaro Taki ◽  
Kazutaka Mori ◽  
Shujie Wang ◽  
...  

Cell migration is essential for various physiological and pathological processes. Polarization in motile cells requires the coordination of several key signaling molecules, including RhoA small GTPases and phosphoinositides. Although RhoA participates in a front–rear polarization in migrating cells, little is known about the functional interaction between RhoA and lipid turnover. We find here that src-homology 2–containing inositol-5-phosphatase 2 (SHIP2) interacts with RhoA in a GTP-dependent manner. The association between SHIP2 and RhoA is observed in spreading and migrating U251 glioma cells. The depletion of SHIP2 attenuates cell polarization and migration, which is rescued by wild-type SHIP2 but not by a mutant defective in RhoA binding. In addition, the depletion of SHIP2 impairs the proper localization of phosphatidylinositol 3,4,5-trisphosphate, which is not restored by a mutant defective in RhoA binding. These results suggest that RhoA associates with SHIP2 to regulate cell polarization and migration.


Sign in / Sign up

Export Citation Format

Share Document