scholarly journals Identification and characterization of a second 4,4′-dibenzamido-2,2′-stilbenedisulphonate (DBDS)-binding site on band 3 and its relationship with the anion/proton co-transport function

2005 ◽  
Vol 388 (1) ◽  
pp. 343-353 ◽  
Author(s):  
James M. SALHANY ◽  
Karen S. CORDES ◽  
Renee L. SLOAN

Band 3 mediates both electroneutral AE (anion exchange) and APCT (anion/proton co-transport). Protons activate APCT and inhibit AE with the same pK (∼5.0). SDs (stilbenedisulphonates) bind to a primary, high-affinity site on band 3 and inhibit both AE and APCT functions. In this study, we present fluorescence and kinetic evidence showing that lowering the pH activates a second site on band 3, which binds DBDS (4,4′-dibenzamido-2,2′-stilbenedisulphonate) independently of chloride concentration, and that DBDS binding to the second site inhibits the APCT function of band 3. Activation of the second site correlated with loss of chloride binding to the transport site, thus explaining the lack of competition. The kinetics of DBDS binding at the second site could be simulated by a slow-transition, two-state exclusive binding mechanism (R0↔T0+D↔TD↔RD, where D represents DBDS, R0 and T0 represent alternate conformational states at the second DBDS-binding site, and TD and RD are the same two states with ligand DBDS bound), with a calculated overall Kd of 3.9 μM and a T0+D↔TD dissociation constant of 55 nM. DBDS binding to the primary SD site inhibited approx. 94% of the proton transport at low pH (KI=68.5±11.8 nM). DBDS binding to the second site inhibited approx. 68% of the proton transport (KI=7.27±1.27 μM) in a band 3 construct with all primary SD sites blocked through selective cross-linking by bis(sulphosuccinimidyl)suberate. DBDS inhibition of proton transport at the second site could be simulated quantitatively within the context of the slow-transition, two-state exclusive binding mechanism. We conclude that band 3 contains two DBDS-binding sites that can be occupied simultaneously at low pH. The binding kinetic and transport inhibition characteristics of DBDS interaction with the second site suggest that it may be located within a gated access channel leading to the transport site.

1999 ◽  
Vol 277 (4) ◽  
pp. C791-C799 ◽  
Author(s):  
Sonya Bahar ◽  
Christopher T. Gunter ◽  
Cheryl Wu ◽  
Scott D. Kennedy ◽  
Philip A. Knauf

Although its primary function is monovalent anion exchange, the band 3 protein also cotransports divalent anions together with protons at low pH. The putative proton binding site, Glu-681 in human erythrocyte band 3, is conserved throughout the anion exchanger family (AE family). To determine whether or not the monovalent anion binding site is located near Glu-681, we modified this residue with Woodward’s reagent K ( N-ethyl-5-phenylisoxazolium-3′-sulfonate; WRK). Measurements of Cl− binding by35Cl-NMR show that external Cl− binds to band 3 even when Cl− transport is inhibited ∼95% by WRK modification of Glu-681. This indicates that the external Cl− binding site is not located near Glu-681 and thus presumably is distant from the proton binding site. DIDS inhibits Cl− binding even when WRK is bound to Glu-681, indicating that the DIDS binding site is also distant from Glu-681. Our data suggest that the DIDS site and probably also the externally facing Cl−transport site are located nearer to the external surface of the membrane than Glu-681.


1996 ◽  
Vol 317 (2) ◽  
pp. 509-514 ◽  
Author(s):  
James M. SALHANY ◽  
Renee L. SLOAN ◽  
Lawrence M. SCHOPFER

Band 3 Memphis variant II is a mutant anion-exchange protein associated with the Diego a+ blood group antigen. There are two mutations in this transporter: Lys-56 → Glu within the cytoplasmic domain, and Pro-854 → Leu within the membrane-bound domain. The Pro-854 mutation, which is thought to give rise to the antigenicity, is located within the C-terminal subdomain of the membrane-bound domain. Yet, there is an apparent enhancement in the rate of covalent binding of H2DIDS (4,4´-di-isothiocyanatodihydro-2,2´-stilbenedisulphonate) to ‘lysine A’ (Lys-539) in the N-terminal subdomain, suggesting widespread conformational changes. In this report, we have used various kinetic assays which differentiate between conformational changes in the two subdomains, to characterize the stilbenedisulphonate site on band 3 Memphis variant II. We have found a significantly higher H2DIDS (a C-terminal-sensitive inhibitor) affinity for band 3 Memphis variant II, due to a lower H2DIDS ‘off’ rate constant, but no difference was found between mutant and control when DBDS (4,4´-dibenzamido-2,2´-stilbenedisulphonate) (a C-terminal-insensitive inhibitor) ‘off’ rates were measured. Furthermore, there were no differences in the rates of covalent binding to lysine A, for either DIDS (4,4´-di-isothiocyanato-2,2´-stilbenedisulphonate) or H2DIDS. However, the rate of covalent intrasubunit cross-linking of Lys-539 and Lys-851 by H2DIDS was abnormally low for band 3 Memphis variant II. These results suggest that the Pro-854 → Leu mutation causes a localized conformational change in the C-terminal subdomain of band 3.


Biochemistry ◽  
1996 ◽  
Vol 35 (21) ◽  
pp. 6931-6943 ◽  
Author(s):  
Douglas J. Scothorn ◽  
Walter E. Wojcicki ◽  
Eric J. Hustedt ◽  
Albert H. Beth ◽  
Charles E. Cobb

1986 ◽  
Vol 250 (6) ◽  
pp. C955-C969 ◽  
Author(s):  
M. A. Milanick ◽  
R. B. Gunn

The inhibition of chloride exchange at 0 degrees C by protons at the cytoplasmic and the extracellular surface of the band 3 protein of human erythrocytes was measured between pH 4.6 and 7.6. At constant external pH and chloride concentration, internal protons were a mixed inhibitor of chloride flux, with the apparent pK2 = 6.1 for protonation of the inward-facing empty transporter conformation and the apparent pK3 = 5.7 for protonation of the chloride-transporter complex. The activation of chloride exchange by external chloride was inhibited by internal protons, and internal protonation of the externally facing empty conformation had a pK1 = 6.1. External protons were also a mixed inhibitor of chloride exchange with the apparent pK1 = 5.0 for the empty outward-facing transporter conformation. Because of the pHo dependence of self-inhibition, the value of pK3 on the outside for chloride could not be accurately determined, but the apparent pK3 for protonation of the iodide-transporter complex on the extracellular surface was 4.9. The data support a mechanism with a single proton binding site that can alternatively have access to the cytoplasmic and extracellular solutions. It appears that this proton binding and transport site can be coupled to the single anion transport site for cotransport, but the two sites can be on opposite sides of the membrane at the same time and thus can be asynchronously transported by conformational changes of band 3.


Biochemistry ◽  
1995 ◽  
Vol 34 (26) ◽  
pp. 8320-8329 ◽  
Author(s):  
Lawrence M. Schopfer ◽  
James M. Salhany
Keyword(s):  

Blood ◽  
2008 ◽  
Vol 111 (2) ◽  
pp. 932-938 ◽  
Author(s):  
Haiyan Chu ◽  
Andrew Breite ◽  
Peter Ciraolo ◽  
Robert S. Franco ◽  
Philip S. Low

Band 3, the major protein of the human erythrocyte membrane, associates with multiple metabolic, ion transport, and structural proteins. Functional studies demonstrate that the oxygenation state of the erythrocyte regulates cellular properties performed by these and/or related proteins. Because deoxyhemoglobin, but not oxyhemoglobin, binds band 3 reversibly with high affinity, these observations raise the hypothesis that hemoglobin might regulate erythrocyte properties through its reversible, oxygenation-dependent association with band 3. To explore this hypothesis, we have characterized the binding site of deoxyHb on human erythrocyte band 3. We report that (1) deoxyHb binds to residues 12-23 of band 3; (2) mutation of residues on either side of this sequence greatly enhances affinity of deoxyHb for band 3, suggesting that evolution of a higher affinity interaction would have been possible had it been beneficial for survival; (3) Hb does not bind to 2 other sequences in band 3 despite their high sequence homology to residues 12-23, and (4) the Hb binding site on band 3 lies proximal to binding sites for glycolytic enzymes, band 4.1 and ankyrin, suggesting possible mechanisms through which multifarious erythrocyte properties might be regulated by the oxygenation state of the cell.


1993 ◽  
Vol 264 (5) ◽  
pp. C1144-C1154 ◽  
Author(s):  
P. A. Knauf ◽  
N. M. Strong ◽  
J. Penikas ◽  
R. B. Wheeler ◽  
S. Q. Liu

Eosin-5-maleimide (EM) has been used as a fluorescent probe for the external-facing transport site of the human erythrocyte band 3 protein. Changes in chloride concentration at both sides of the membrane have no significant effect on the inhibitory potency of EM as a reversible inhibitor of Cl- exchange at 0 degrees C, however, demonstrating that it is not a competitive inhibitor. The affinity of EM for the form of band 3 with the transport site facing outward is approximately five times greater than for the form with the transport site facing the cytoplasm; binding of iodide to the external transport site causes no statistically significant decrease in affinity for EM. Eosin, without the maleimide moiety, is a slightly more potent inhibitor than is EM. Erythrosin, an analogue with four iodide atoms replacing the four bromide atoms in eosin, is a much more potent inhibitor, with a half-inhibitory concentration of only 3.1 microM, > 30 times lower than that of EM. Neither eosin nor erythrosin inhibition is affected by changes in chloride concentration as would be expected for a competitive inhibitor. Thus EM and the other eosin derivatives bind to a site separate from the external transport site, but one that is affected by the changes of transport site conformation from the inward-facing to the outward-facing state.


1999 ◽  
Vol 77 (6) ◽  
pp. 543-549 ◽  
Author(s):  
James M Salhany

A novel kinetic approach was used to measure monovalent anion binding to better define the mechanistic basis for competition between stilbenedisulfonates and transportable anions on band 3. An anion-induced acceleration in the release of 4,4prime-dibenzamidostilbene-2,2prime-disulfonate (DBDS) from its complex with band 3 was measured using monovalent anions of various size and relative affinity for the transport site. The K1/2 values for anion binding were determined and correlated with transport site affinity constants obtained from the literature and the dehydrated radius of each anion. The results show that anions with ionic radii of 120-200 pm fall on a well-defined correlation line where the ranking of the K1/2 values matched the ranking of the transport site affinity constants (thiocyanate < nitrate equivalent to bromide < chloride < fluoride). The K1/2 values for the anions on this line were about 4-fold larger than expected for anion binding to inhibitor-free band 3. Such a lowered affinity can be explained in terms of allosteric site-site interactions, since the K1/2 values decreased with increasing anionic size. In contrast, iodide, with an ionic radius of about 212 pm, had a 10-fold lower affinity than predicted by the correlation line established by the smaller monovalent anions. These results indicate that smaller monovalent anions have unobstructed access to the transport site within the band 3 / DBDS binary complex, while iodide experiences significant steric hindrance when binding. The observation of steric hindrance in iodide binding to the band 3 / DBDS binary complex, but not in the binding of smaller monovalent anions, suggests that the stilbenedisulfonate binding site is located at the outer surface of an access channel leading to the transport site.Key words: band 3, anion transport, membrane protein structure, red cell membrane.


Sign in / Sign up

Export Citation Format

Share Document