Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites?

1986 ◽  
Vol 250 (6) ◽  
pp. C955-C969 ◽  
Author(s):  
M. A. Milanick ◽  
R. B. Gunn

The inhibition of chloride exchange at 0 degrees C by protons at the cytoplasmic and the extracellular surface of the band 3 protein of human erythrocytes was measured between pH 4.6 and 7.6. At constant external pH and chloride concentration, internal protons were a mixed inhibitor of chloride flux, with the apparent pK2 = 6.1 for protonation of the inward-facing empty transporter conformation and the apparent pK3 = 5.7 for protonation of the chloride-transporter complex. The activation of chloride exchange by external chloride was inhibited by internal protons, and internal protonation of the externally facing empty conformation had a pK1 = 6.1. External protons were also a mixed inhibitor of chloride exchange with the apparent pK1 = 5.0 for the empty outward-facing transporter conformation. Because of the pHo dependence of self-inhibition, the value of pK3 on the outside for chloride could not be accurately determined, but the apparent pK3 for protonation of the iodide-transporter complex on the extracellular surface was 4.9. The data support a mechanism with a single proton binding site that can alternatively have access to the cytoplasmic and extracellular solutions. It appears that this proton binding and transport site can be coupled to the single anion transport site for cotransport, but the two sites can be on opposite sides of the membrane at the same time and thus can be asynchronously transported by conformational changes of band 3.

1989 ◽  
Vol 257 (2) ◽  
pp. C277-C289 ◽  
Author(s):  
P. A. Knauf ◽  
L. J. Spinelli ◽  
N. A. Mann

With Cl as substrate, the human red blood cell anion transport (band 3) protein can exist in four conformations: Ei, with the transport site facing the cytoplasm; Eo, with the transport site facing the external medium; and ECli and EClo, the corresponding forms loaded with Cl. Flufenamic acid (FA), an inhibitor that binds to an external site different from the transport site, binds to Eo with a dissociation constant of 0.0826 +/- 0.0049 (SE) microM. Binding of iodide or sulfate to the external-facing transport site reduces the affinity by 1.66 or 14.3-fold, respectively. Changing from Eo to Ei lowers the affinity by 3.7-fold, and binding of cytoplasmic iodide to Ei further decreases the affinity by 5.5-fold. Thus changes in orientation of the transport site and substrate binding, even at the opposite side of the membrane, cause sufficient conformational changes in band 3 to affect FA binding substantially. If the possible effects of Cl binding to the transport site on FA affinity are estimated from the iodide data, the dependence of FA inhibitory potency on Cl concentrations inside and outside the cell suggests that there are at least 6.5 times as many inward-facing as outward-facing Cl-loaded transport sites. This information can be used to calculate the distribution of capnophorin among the various conformations under different circumstances and to devise conditions for recruiting the transport molecules toward a particular conformation.


1983 ◽  
Vol 81 (1) ◽  
pp. 95-126 ◽  
Author(s):  
P A Knauf ◽  
F Y Law ◽  
P J Marchant

The parallel effects of the anion transport inhibitor DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonate) on net chloride flow and on chloride exchange suggest that a major portion of net chloride flow takes place through the anion exchange system. The "slippage" model postulates that the rate of net anion flow is determined by the movement of the unloaded anion transport site across the membrane. Both the halide selectivity of net anion flow and the dependence of net chloride flux on chloride concentration over the range of 75 to 300 mM are inconsistent with the slippage model. Models in which the divalent form of the anion exchange carrier or water pores mediate net anion flow are also inconsistent with the data. The observations that net chloride flux increases with chloride concentration and that the DIDS-sensitive component tends to saturate suggest a model in which net anion flow involves "transit" of anions through the diffusion barriers in series with the transport site, without any change in transport site conformation such as normally occurs during the anion exchange process. This model is successful in predicting that the anion exchange inhibitor NAP-taurine, which binds to the modifier site and inhibits the conformational change, has less effect on net chloride flow than on chloride exchange.


1999 ◽  
Vol 277 (4) ◽  
pp. C791-C799 ◽  
Author(s):  
Sonya Bahar ◽  
Christopher T. Gunter ◽  
Cheryl Wu ◽  
Scott D. Kennedy ◽  
Philip A. Knauf

Although its primary function is monovalent anion exchange, the band 3 protein also cotransports divalent anions together with protons at low pH. The putative proton binding site, Glu-681 in human erythrocyte band 3, is conserved throughout the anion exchanger family (AE family). To determine whether or not the monovalent anion binding site is located near Glu-681, we modified this residue with Woodward’s reagent K ( N-ethyl-5-phenylisoxazolium-3′-sulfonate; WRK). Measurements of Cl− binding by35Cl-NMR show that external Cl− binds to band 3 even when Cl− transport is inhibited ∼95% by WRK modification of Glu-681. This indicates that the external Cl− binding site is not located near Glu-681 and thus presumably is distant from the proton binding site. DIDS inhibits Cl− binding even when WRK is bound to Glu-681, indicating that the DIDS binding site is also distant from Glu-681. Our data suggest that the DIDS site and probably also the externally facing Cl−transport site are located nearer to the external surface of the membrane than Glu-681.


2005 ◽  
Vol 388 (1) ◽  
pp. 343-353 ◽  
Author(s):  
James M. SALHANY ◽  
Karen S. CORDES ◽  
Renee L. SLOAN

Band 3 mediates both electroneutral AE (anion exchange) and APCT (anion/proton co-transport). Protons activate APCT and inhibit AE with the same pK (∼5.0). SDs (stilbenedisulphonates) bind to a primary, high-affinity site on band 3 and inhibit both AE and APCT functions. In this study, we present fluorescence and kinetic evidence showing that lowering the pH activates a second site on band 3, which binds DBDS (4,4′-dibenzamido-2,2′-stilbenedisulphonate) independently of chloride concentration, and that DBDS binding to the second site inhibits the APCT function of band 3. Activation of the second site correlated with loss of chloride binding to the transport site, thus explaining the lack of competition. The kinetics of DBDS binding at the second site could be simulated by a slow-transition, two-state exclusive binding mechanism (R0↔T0+D↔TD↔RD, where D represents DBDS, R0 and T0 represent alternate conformational states at the second DBDS-binding site, and TD and RD are the same two states with ligand DBDS bound), with a calculated overall Kd of 3.9 μM and a T0+D↔TD dissociation constant of 55 nM. DBDS binding to the primary SD site inhibited approx. 94% of the proton transport at low pH (KI=68.5±11.8 nM). DBDS binding to the second site inhibited approx. 68% of the proton transport (KI=7.27±1.27 μM) in a band 3 construct with all primary SD sites blocked through selective cross-linking by bis(sulphosuccinimidyl)suberate. DBDS inhibition of proton transport at the second site could be simulated quantitatively within the context of the slow-transition, two-state exclusive binding mechanism. We conclude that band 3 contains two DBDS-binding sites that can be occupied simultaneously at low pH. The binding kinetic and transport inhibition characteristics of DBDS interaction with the second site suggest that it may be located within a gated access channel leading to the transport site.


1994 ◽  
pp. 137-138
Author(s):  
B. Baggio ◽  
L. Bordin ◽  
G. Gambaro ◽  
M. Vincenti ◽  
M. Nassuato ◽  
...  

1996 ◽  
Vol 107 (2) ◽  
pp. 271-291 ◽  
Author(s):  
S Q Liu ◽  
F Y Law ◽  
P A Knauf

To test the hypothesis that amino acid residues in band 3 with titratable positive charges play a role in the binding of anions to the outside-facing transport site, we measured the effects of changing external pH (pH(O)) on the dissociation constant for binding of external iodide to the transport site, K(O)(I). K(O)(I) increased with increasing pH(O), and a significant increase was seen even at pH(O) values as low as 9.9. The dependence of K(O)(I) on pH(O) can be explained by a model with one titratable site with pK 9.5 +/- 0.2 (probably lysine), which increases anion affinity for the external transport site when it is in the positively charged form. A more complex model, analogous to one recently proposed by Bjerrum (1992), with two titratable sites, one with pK 9.3 +/- 0.3 (probably lysine) and another with pK > 11 (probably arginine), gives a slightly better fit to the data. Thus, titratable positively charged residues seem to be functionally important for the binding of substrate anions to the outward-facing anion transport site. In addition, analysis of Dixon plot slopes for L inhibition of Cl- exchange at different pH 0 values, coupled with the assumption that pH(O) has parallel effects on external I- and Cl- binding, indicates that k', the rate-constant for inward translocation of the complex of Cl- with the extracellular transport site, decreases with increasing pH(O). The data are compatible with a model in which titration of the pK 9.3 residue decreases k to 14 +/- 10% of its value at neutral pH(O). This result, however, together with Bjerrum's (1992) observation that the maximum flux J(M)) increases 1.6-fold when this residue is deprotonated, makes quantitative predictions that raise significant questions about the adequacy of the two titratable site ping-pong model or the assumptions used in analyzing the data.


Sign in / Sign up

Export Citation Format

Share Document